Ash characteristics and utilisation

Michiel Carbo (ECN)
Aaron Füller (IFK-Universität Stuttgart)

Brussels, Belgium
11 December 2012

www.ecn.nl
Outline

- Current and potential future ash utilisation options
- Result of Joint Measurement Campaigns
- Conformity of ashes with EN specifications
- Conclusions and recommendations
Objectives

- Utilisation of bottom and fly ash essential for economic and environmental performance of biomass co-firing
- Different DEBCO Joint Measurement Campaigns cover broad biomass co-firing spectrum, and associated potential ash utilisation routes
- Increased biomass co-firing scenarios lie beyond the scope of existing EN specifications
- DEBCO results aim provide substantial base to evaluate needs and limitations for future specifications
Types of ashes

• **Bottom ashes:**
 - Slag, dry bottom ash and bed materials
 - Drop from flame and collected at bottom of thermal conversion installation
 - Common characteristics:
 - Bulk formed by inert sand and sand-like materials
 - Low loss-on-ignition (LOI), low carbon content, low volatile content, and low concentration of leachable contaminants

• **Fly ashes:**
 - Fine powders, low bulk density, entrained by flue gas
 - Contain volatile elements that condense upon cooling
 - Characteristics:
 - Large variation in composition, LOI, carbon content
 - Typically higher volatile content and display increased leaching
Approach to identify ash utilisation options

EU Waste Management Hierarchy

- Ash value is zero or slightly positive
- Avoidance land fill costs
- Strongly influenced by local conditions

Ash utilisation options
Ash utilisation options (1)

• Consistency and quantity are the keys to successful ash utilisation:
 – Ash to be delivered with predictable and constant quality
 – Low constant quality is preferred over fluctuating high quality
 – Profitable niche utilisation options may exist locally
 – No “of the shelf” solutions for bulk biomass ashes that do not comply with EN-450

• Established bulk applications:
 – Construction materials and products
 – Mine back-filling
 – Fertilizer
 – Fuel (carbon-rich ash)

• Ash is the starting point → appropriate utilisation option to be identified
Ash utilisation options (2)

<table>
<thead>
<tr>
<th>Sector</th>
<th>Application</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction and Civil Engineering</td>
<td>Cement, concrete, mortar</td>
<td>Binder, filler</td>
</tr>
<tr>
<td></td>
<td>Low quality concrete products</td>
<td>Reactive filler</td>
</tr>
<tr>
<td></td>
<td>Synthetic aggregates</td>
<td>Raw material</td>
</tr>
<tr>
<td></td>
<td>Road construction</td>
<td>Binder/Sand replacement</td>
</tr>
<tr>
<td></td>
<td>Landscaping/embankments</td>
<td>Filler</td>
</tr>
<tr>
<td></td>
<td>Soil stabilization</td>
<td>Binder</td>
</tr>
<tr>
<td></td>
<td>Sand-lime bricks</td>
<td>Filler</td>
</tr>
<tr>
<td></td>
<td>Carbon concrete (C-fix)</td>
<td>Filler</td>
</tr>
<tr>
<td>Energy production</td>
<td>Re-burning</td>
<td>Fuel</td>
</tr>
<tr>
<td>Mining</td>
<td>Mine back-filling</td>
<td>Filler</td>
</tr>
</tbody>
</table>

Derived from: Saraber and Overhof (2009)
Ash utilisation options (3)

<table>
<thead>
<tr>
<th>Sector</th>
<th>Application</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture/Forestry</td>
<td>Soil improvement/Fertilizer</td>
<td>Product/Raw material</td>
</tr>
<tr>
<td>Industry</td>
<td>Polymers</td>
<td>Filler</td>
</tr>
<tr>
<td></td>
<td>Zeolites</td>
<td>Raw material</td>
</tr>
<tr>
<td></td>
<td>Metals</td>
<td>Filler</td>
</tr>
<tr>
<td></td>
<td>Phosphor production</td>
<td>Raw material</td>
</tr>
<tr>
<td></td>
<td>Metals recovery</td>
<td>Raw material</td>
</tr>
<tr>
<td></td>
<td>Mineral fibers</td>
<td>Raw material</td>
</tr>
<tr>
<td>Environmental technology</td>
<td>Impermeable layer (landfill)</td>
<td>Raw material</td>
</tr>
<tr>
<td></td>
<td>Waste acids neutralisation</td>
<td>Product</td>
</tr>
<tr>
<td></td>
<td>Adsorption material</td>
<td>Raw material</td>
</tr>
</tbody>
</table>

Derived from: Saraber and Overhof (2009)
Direct use as construction material

Bottom ashes are directly used as construction material or filler:
- From coal-fired power plants: little or no restrictions (sometimes CO₂ uptake through aging to reduce basicity)
- From fluidized bed combustion/gasification: predominantly sand
- From grate stokers in granulates (0-40 mm)
- In general: replacing mineral sources (sand, gravel and granulates) in civil engineering (EN-13055) or landscaping

Fly ash not likely suitable for direct use

Bottom ash used during road construction
Binder in concrete, cement and mortars

Main use of coal-derived fly-ash: (partially) replacing Portland cement:

- Good pozzolanic properties
- Less lime calcination → reduced carbon foot print
- Minimum emission Portland cement 760 kg CO₂/ton
- Large market
- “Pure” coal ashes are most attractive; biomass co-firing ashes to a limited extent due to free lime
- Existing standards, EN-450, EN-196, EN-197, etc.
- Allows clean wood co-firing up to estimated 25-40% (energy basis)
- Landfill typically more expensive than utilisation in concrete or cement

- Developments in fly-ash based geopolymers as binder to replace cement
Low-quality concrete products

- Absence of reinforcement → no corrosion vulnerability alkali metals & Cl
- Limited forces exerted; fly ash mainly used to obtain volume
- Examples:
 - Segmented retainer walls (SRW), e.g. “Earth Blocks” or “Megablocks”
 - Concrete pavement tiles
 - Artificial reefs
Lightweight aggregates

- Replace mineral aggregates in lightweight concrete with improved thermal insulation
- Appropriate physical and mechanical properties
- High K and Ca content lower operating temperature during sintering
- Leaching comparable with mineral aggregates when used in concrete
- Less avoided CO₂ emissions than replacement for cement
Fertilizer/soil improvement

Both direct utilisation and use as raw materials for fertilizer feasible

• Nutrients from a biological source
• Saving mineral (non-sustainable) resources

• Ashes are incomplete fertilizers – no nitrogen and less-soluble phosphorus
• Low nutrient content compared to heavy metals (especially Cd, also As, Zn)
• High inert content (sand)

• Use as soil improver possible especially for high Ca and Mg content; e.g. when dolomite is used as bed material in combustion/gasification
Ash recycling in forestry

• Whole Tree Harvesting (WTH) became more lucrative during past decades:
 – Increased use of forest residues as cheap and clean fuel
 – Nutrients mainly present in roots, bark, branches, leaves and needles; therefore WTH poses risk of nutrient depletion

• Ash recycling can also counteract acidification

• No common European standard but regulated by certain individual states:
 – Sweden, Finland, Austria, Germany, Slovakia

• Sweden is a frontrunner:
 – Ash recycling condition for WTH
 – Specified minimum nutrient and maximum contaminant content
 – Locally used in combustion installation
 – 50% of ashes (technically) suitable