



# A vgbe & DNV project **Reliability Indicators with KISSY new data 2009 to 2020**

Utilities

Report No.: 23-0027, Rev.1 Date: 02023-07-05







Project name: Report title:

#### Customer:

Customer contact: Date of issue: Project No.: Organisation unit: Report No.:

A vgbe & DNV project Reliability Indicators with KISSY new data 2009 to 2020

EMS-TT 23-0027, rev 1

2023-07-05 10319859

**Energy Systems** vgbe energy e.V. Deilbachtal 173 45257 Essen Germany www.vgbe.energy | www.vgbe.services

DNV Netherlands B.V. Utrechtseweg 310-B50 6812 AR Arnhem The Netherlands

Tel: +31 26 356 9111 Registered Arnhem 09006404

Prepared by:

H. Wels **Reliability Engineer** 

P. Wolbers

Verified by:

Senior Consultant

Stefan Prost, vgbe energy e.V. Christopher Weßelmann, vgbe energy service GmbH

M. Bergman Senior Consultant

Approved by: W. Fleuren

Head of Section Dr. O. Then

**Executive Managing Director** vgbe energy e.V.

Copyright © vgbe energy e.V./vgbe energy service GmbH & Copyright © DNV 2023.

Information in this document is intended to permit data utilization in the interests of evaluating and improving reliability, availability, maintenance and safety in the power production industry. Publication of said information does not imply verification or endorsement of the information. Neither vgbe, DNV nor the originators of data included in this document assume any liability to parties adopting any product, process or practice based upon the usage of the information.

| Rev. No. | Date       | Reason for Issue | Prepared by | Verified by            | Approved by             |
|----------|------------|------------------|-------------|------------------------|-------------------------|
| 0        | 2023-01-05 | First issue      | H.C. Wels   | M. Bergman; P. Wolbers | W. Fleuren              |
| 1        | 2023-07-05 | Second issue     | H.C. Wels   | P. Wolbers             | S. Prost; C Wesselmann, |

(vgbe)





# Table of contents

| ABBREVIATIONS                                                                                         | 1     |
|-------------------------------------------------------------------------------------------------------|-------|
| SUMMARY                                                                                               | 2     |
| 1 INTRODUCTION                                                                                        | 3     |
| 2 LIMITATIONS USING KISSY DATA                                                                        | 4     |
| 3 METHOD TO ARRIVE AT RELIABILITY DATA                                                                | 5     |
| 4 SELECTION OF PLANTS                                                                                 | 7     |
| 5 SELECTION OF KKS-CODES                                                                              | 9     |
| 6 FAILURE RATE AND REPAIR TIME                                                                        | 14    |
| 7 UNCERTAINTY DUE TO DIFFERENCES BETWEEN PLANTS                                                       | 18    |
| 8 DETECTION OF OUTLIERS                                                                               | 19    |
| 9 ANALYSIS OF AGEING                                                                                  | 20    |
| 10 DISTRIBUTION OF REPAIR TIMES                                                                       | 23    |
| 11 COMPLETE DATA REPORT                                                                               | 25    |
| 12 EXAMPLE OF PLANT MODELLING                                                                         | 35    |
| 12.1 Monte Carlo simulations with an Excel macro program                                              | 35    |
| 12.2 Calculations with RBDA                                                                           | 39    |
| 12.3 Calculations using DNV's Maros Software                                                          | 45    |
| REFERENCES                                                                                            | 48    |
|                                                                                                       | - 4   |
| Appendix A Examples of applications<br>Reference list of KKS codes<br>Reference list of EMS 4/1 codes | 51    |
| Appendix B Results RAM parameters Coal plants                                                         | 59    |
| Appendix C Results RAM parameters CCGT plants                                                         | 71    |
| Appendix D Results RAM parameters Lignite plants                                                      | 83    |
| Appendix E Examples of plant layouts                                                                  | 97    |
| Appendix F Standard reports and plots Coal                                                            | . 105 |
| Appendix G Standard reports and plots CCGT gas                                                        | . 531 |
| Appendix H Standard reports and plots Lignite                                                         | . 815 |
| Appendix I Overall results                                                                            | 1137  |





#### SUMMARY

Failures of a power plant can be costly and efforts should be directed to prevent such failures. Methods using Reliability Analysis Maintainability (RAM) tools are well known to answer questions on target values for Reliability and Availability of a plant, capacity expansion planning, optimum redundancy, maintenance optimisation, spare parts etc.. However, such RAM tools need high quality reliability data. These data are scarce for power plant components.

In the report reliability data such as a failure rate (1 / Mean Time Between Failures, 1 / MTBF) and an average repair time (the time equipment is unavailable) are derived from raw events in the vgbe KISSY database using data over the period 2009 – 2020 on KKS breakdown level. The report follows the VGB 361 R&D project with data over the period 2002 – 2011 using almost identical methods and standardised reports. However, automatically outliers are indicated now and trends are calculated without such outliers.

In Annex A some applications are given using RAM data. Overall results for the vgbe KISSY data in this report are given in Annex B - D, while Annex F - H contains standard reports and plots for the plant categories CCGT and coal / lignite fired plants. Example calculations are given using the data for a CCGT plant.





#### 1 INTRODUCTION

There is a use for high quality reliability data for power plants. These data can be used to optimise plant configurations, for benchmarking, maintenance optimisation, etc.. Such reliability data are preferably given as a failure rate (1 / Mean Time Between Failures, 1 / MTBF) and an average repair time (Mean Time to Repair MTTR, the time equipment is unavailable). The required level of detail is dependent on the use of the data: A high level of detail (subsystem level or deeper) is required for spare parts analysis or maintenance optimisation and a lower level of detail (system or subsystem level) for the systems design of new plants.

However, these data are scarce for power plants. In 2013 DNV KEMA (now DNV) carried out the VGB research project 361 [1] (now vgbe) in which failure rates and average repair times were derived from the vgbe KISSY database using data over the period 2002 – 2011 on subsystem level. The present report contains data derived from KISSY over the period 2009 – 2020 using almost identical methods and standardised reports. Compared to 361, the standardised reports now automatically indicate outliers using methods from [2] and as a result trends are calculated without such outliers.

Similar sources for other industries and applications can be found in alternative databases / reports. For instance, detailed data from the oil and gas industry are reported in OREDA, the latest Handbook with failure rates etc. from 2015 (also digital). Data from the nuclear power industry are present e.g. in the EIREDA report (extensive work of Henri Procaccia et all from EdF), the T-Book (Swedish nuclear plants) and in the ZEDB handbook (Zentrale Zuverlässigkeitsund Ereignisdatenbank, Reliability Data for Nuclear Power Plant Components, German nuclear plants). However these handbooks do not contain typical conventional power plant components such as large gas turbines, steam turbines, generators, evaporators, superheaters, coal mills, flue gas ventilators etc.. EPRI has its data base (called EPRI PM = Preventive Maintenance) in which data from expert judgement are reported. NERC GADS has its database and software to derive failure rates and repair times called pc-GAR going back to 1982. Requests for pc-GAR versions from organizations outside the United States are evaluated and approved on a case-by-case basis. Alstom has been known to operate a database with data from Alstom plants. Both the EPRI and Alstom data are not easily available. In the interest of the power industry therefore DNV and vgbe decided to publish the present report. The TG Performance indicators group has allowed the use of the data for the project. As per the Inception Report [3], the project is carried out with guidance from the vgbe Working Group "Application".

The KKS designations (Function Keys) used in this project have been described in an understandable but abbreviated form, as the original designations are too long for the graphs or Excel cells and cannot be displayed. The original designations are described in Reference VGB-S-811-01-2018-01-EN, Key Part.

The report, in addition to the information in the VGB Research Project 361, with the aforementioned reliability data, is intended to be of use for companies working with power plants (new and existing). In Annex A some applications are given using reliability data from vgbe as well as from some power plants derived in DNV projects. The new report has the same structure as the VGB 361 report, explaining the data and the methods to derive failure rates, etc.. It is extended with a description on how to derive outliers. We have given an example calculation for a CCGT plant.





# 2 LIMITATIONS USING KISSY DATA

The vgbe KISSY database contains the raw material for deriving failure rates and repair times. In KISSY engineers and operators working at power plants and other personnel at utilities record the unavailability of power plants and the components that cause it. Power plant information in KISSY is made anonymous when handing over to third parties. The systems, sub-systems and components are indicated with the Kraftwerk-Kennzeichensystem (KKS<sup>1</sup>), mainly on 3 letter coding pinpointing to subsystems. One can derive the following failure data from KISSY:

Subsystem data for evaporators, superheaters, etc. since such failures often cause full plant outages. Still, one
has to know how many boilers (a so-called duo block has 2 boilers and 1 steam turbine) are present to
calculate the failure rate of a boiler, superheater, etc.. Similar for gas turbines, generators, step-up
transformers, etc..

Data for flue gas fans can be derived since failures of such components cause both partial outages and full outages of the plant and again one must know how many fans are present. For the VGB Research Project 361 [1] both an enquiry for the plant configuration was sent out to the engineers inputting data in KISSY as well as checking the raw text and amount of loss when failed. For the present analysis, only the raw text and partial outages was checked. As there are both partial failures and full plant outage failures in the database, it is easy to derive so-called common cause coefficients that show the fraction where both (or more) components fail at the same time.

Component failure data for fully redundant feed water pumps etc. cannot generally be derived from KISSY
unless they cause full outages due to so-called common cause failures. However, turbine driven feed water
pumps normally are accompanied by smaller electromotor driven pumps. When such a turbine driven pump
fails, it causes a partial outage. Therefore, by assessing the partial outages of plants that are sure to have a
turbine driven feed water pump, the failure rate and repair time of that pump can be derived.

It should be noted that these reliability data are not found in the annual KISSY reports since for instance the number of ventilators is not taken into account in these reports. The standard KISSY reports do show which systems and components are dominant, either on the number of failures per year and per block basis on a forced unavailability basis. Therefore, low failure rates are not reported, while some systems may have HILP (High Impact Low Probability) failures with an important contribution to plant unavailability.

<sup>&</sup>lt;sup>1</sup> The KKS codes in this report mentioned are informal translations. Reference is made to the appropriate handbooks as found on the vgbe website (KKS Identification System for Power Stations (ISBN 978-3-96284-271-0; 978-3-96284-270-3; 978-3-96284-269-7; 978-3-96284-268-0)





### 3 METHOD TO ARRIVE AT RELIABILITY DATA

The plant characteristics are shown in Figure 3-1, whereas the raw KISSY failure information in Excel is shown in Figure 3-2 (next page). Plants have been made anonymous and the plant size has been grouped by vgbe head office to make plants anonymous. Columns in light-green in Figure 3-1 were calculated by DNV, the other columns contain the basic information from vgbe.

| Power Plant Unit | Type of Power Plan     | ı First Fail | Last fail | Years in<br>database | Fuel      | Average<br>Starts / yr | Capacity net<br>[MW] | Age<br>max in<br>database | Average<br>Operating Hours | Years in<br>database<br>as ResKV |
|------------------|------------------------|--------------|-----------|----------------------|-----------|------------------------|----------------------|---------------------------|----------------------------|----------------------------------|
| 1                | Mono fossil fired unit | 2009         | 2019      | 5                    | Hard Coal | 42.7                   | 400 - 599 MW         | 35                        | 2821                       | 1                                |
| 2                | CCGT                   | 2009         | 2019      | 11                   | Hard Coal | 36.7                   | 200 - 399 MW         | 23                        | 5212                       | 0                                |
| 3                | gas turbine jet        | 2014         | 2020      | 7                    | Oil       | 22.0                   | until 99 MW          | 47                        | 32                         | 0                                |
| 4                | Mono fossil fired unit | 2009         | 2013      | 5                    | Hard Coal | 19.0                   | 600 - 999 MW         | 35                        | 6366                       | 0                                |
| 5                | Mono fossil fired unit | 2009         | 2013      | 5                    | Hard Coal | 1.0                    | 600 - 999 MW         | 28                        | 8067                       | 0                                |
| 6                | Mono fossil fired unit | 2009         | 2012      | 2                    | Hard Coal | 18.8                   | until 99 MW          | 53                        | 3442                       | 0                                |
| 7                | Mono fossil fired unit | 2009         | 2018      | 10                   | Hard Coal | 41.0                   | 600 - 999 MW         | 39                        | 4376                       | 0                                |
| 8                | Mono fossil fired unit | 2009         | 2009      | 1                    | Hard Coal | 0.0                    | 600 - 999 MW         | 33                        | 3781                       | 0                                |
| 9                | Duo fossil fired unit  | 2009         | 2020      | 11                   | Lignite   | 7.0                    | 400 - 599 MW         | 42                        | 7767                       | 0                                |
| 10               | Duo fossil fired unit  | 2009         | 2020      | 12                   | Lignite   | 5.6                    | 400 - 599 MW         | 40                        | 7953                       | 0                                |
| 11               | Mono fossil fired unit | 2009         | 2020      | 12                   | Lignite   | 10.2                   | 600 - 999 MW         | 20                        | 7811                       | 0                                |
| 12               | Mono fossil fired unit | 2013         | 2020      | 8                    | Lignite   | 16.1                   | 600 - 999 MW         | 9                         | 6935                       | 0                                |
| 13               | Mono fossil fired unit | 2009         | 2013      | 5                    | Hard Coal | 24.3                   | 600 - 999 MW         | - 30                      | 6786                       | 0                                |
| 14               | Mono fossil fired unit | 2009         | 2011      | 3                    | Hard Coal | 13.8                   | 600 - 999 MW         | 29                        | 6900                       | 0                                |
| 15               | Mono fossil fired unit | 2014         | 2014      | 1                    | Hard Coal | 15.2                   | 600 - 999 MW         | 30                        | 7187                       | 0                                |
| 16               | Mono fossil fired unit | 2009         | 2014      | 5                    | Hard Coal | 17.0                   | 600 - 999 MW         | 28                        | 7103                       | 0                                |
| 17               | Mono fossil fired unit | 2009         | 2013      | 5                    | Lignite   | 0.0                    | 200 - 399 MW         | 34                        | 5744                       | 0                                |
| 18               | Mono fossil fired unit | 2009         | 2012      | 4                    | Gas       | 36.0                   | 600 - 999 MW         | 43                        | 2181                       | 0                                |

#### Figure 3-1 Anonymous plant information derived from vgbe KISSY

Figure 3-1 shows the type of plant, fuel, over how many years it has been present in the period analysed (2009-2020), the age of the plant at end of the dataset and the average operating hours per year. Starts per year are given as well, but they have not always been reported as this was mandatory only for gas turbines. However, in recent years all plants have provided their annual starts. In the last column (years in database as ResKV), it is shown whether the plant is operated as a reserve plant to strengthen the grid on request of the regulator (so called ResKV plant). As such plants do not operate much and they are not in the electricity market, their behaviour might be very different from plants that are active on the electricity market. In Excel a filter was built to either take all data, data without ResKV years or ResKV only years in account. The failure data overviews per KKS code in Annex B to C were calculated without ResKV years.





#### 4 SELECTION OF PLANTS

As per the Inception Report [3], in the spreadsheet the following plant types, fuels and plant sizes can be selected:

- Conventional plants for 4 fuel types (hard coal, lignite, oil and gas fired).
- Combined cycles (called Kombi in Germany) and CCGT plants. These are plants equipped with gas turbines. Most CCGT plants have heat recovery, non-fired, boilers.
- Mono plants versus Duo plants (several boilers to 1 steam turbine)
- Plant size in the same classes as per the VGB 361 R&D project
- ResKV (grid reserve) plants included, not included or selected.

In the VGB 361 R&D project, a differentiation was made into modern (< 10 years old), midlife (10 - 25 years old) and aged ((>25 years old) plants. In line with the Inception Report [3], this difference is skipped as ageing effects can be directly read from the standard plots. Furthermore, a plant that might be midlife in VGB 361 could now be aged. As the failure characteristics per plant may differ substantially, this influences the results per class.

Examples of standard layouts are shown in Figure 4-1 and Annex E. It is recommended to use such layouts for benchmarking purposes as for instance benchmarking for the number of times a plant is fully out of operation not taking into account a single shaft configuration with 1 GT + ST + generator versus a multi shaft configuration with for instance 2 GTs, 1 ST, 3 generators make no sense. The single shaft configuration will have a full outage more often due to its layout.





### 5 SELECTION OF KKS CODES

As per the Inception Report [3], only KKS codes that are dominant with regard to forced unavailability are analysed, in line with Pareto's 80-20 rule It makes little sense to analyse a code with only a few failures since statistically the average number of failures per hour and the average repair time is very inaccurate<sup>2</sup>. We have calculated Pareto's for CCGTs, for coal fired plants and for lignite fired plants. Compared to the thousands of failures present in these Pareto's, a Pareto for ResKV coal plants (70 failures) and ResKV CCGTs (35 failures) will be sensitive to chance and therefore is not reported.

For the Pareto of CCGTs in Figure 5-1 & 5-2. the dominance of GT failures with MB = gas turbine is shown causing 20 % of the energy related to outages, followed by other rotating equipment items. Interestingly, HAD = evaporator is only at place 9, therefore HAD for heat recovery boilers is clearly less dominant compared to conventional fossil fired boilers.

For the Pareto of hard coal plants in Figure 5-3 & 5-4 the HAD = evaporator, HAH = superheaters and HAJ = reheaters are dominant components which have been in Pareto's for decades. Interestingly however also present is MKA = generator stator & rotor (place no. 3) as well as LAC = feed water pumps (place no. 4). For the Pareto of lignite plants in Figure 5-5 & 5-6, similar to hard coal plants, HAD = evaporator, HAH = superheaters and HAJ = reheaters are the dominant components.

For each KKS code that is dominant in the Pareto analysis, standard reports were made as per Annex F to H together with some additional standard reports for components that allow to compare for instance GT bearings with ST and generator bearings, etc..

As some power plants systematically code at 2 letters KKS only, these plants are automatically de-selected when a component level is chosen on 3 letters. When selected the result would be that the failure rate is too low when taking operating hours of such plants into the equation.

<sup>&</sup>lt;sup>2</sup> The spreadsheet for analysis however can enter any valid KKS code and calculate the failure rate and repair time.





# 6 FAILURE RATE AND REPAIR TIME

The calculation of failure rate and average repair time is straightforward. The failure rate is defined as the average number of failures per unit of time per component (KKS code). For time, plant operating time was chosen as it can be expected that with less operating time the number of failures becomes lower. The number of components (subsystems) is either taken from a help-file in which the number of components is estimated or, for those plants that have reacted to VGB's 361 R&D project questionnaire on plant layout, have been recorded.

As an example: plant no. 159 had 7 GT failures (EMS-code A1 and A2) on its 2 GTs. The plant was operated on average 5400 hrs per year and is present for 7 years in the database. The failure rate per GT is 7 / (5400 \* 7 \* 2) =  $9.2 \times 10^{-5}$  hr<sup>-1</sup> (which is rather low compared to the average of  $9.71 \times 10^{-4}$  hr<sup>-1</sup>). It is recognized that if 1 GT operates significantly less than the other one, the failure rate can be underestimated. However, gathering operating hours for separate subsystems requires significantly more input data. For some plants this may be present in KISSY as some companies have inputted such data in order to follow individual GTs, but this was not taken into account.

The repair time is defined as the average duration of the failures. It is not possible in the present data structure to subdivide failure duration into active repair time, waiting time (cooling, spares, etc.). This would also require substantial data efforts for the people that input the data since this is not generally recorded in the same database. The free text field usually gives insufficient clues to long waiting times however the free text field allows to record special events like delivery problems, a turbine rotor being delayed in transport, etc..



Figure 6-1 failure rate and repair time of HAD = evaporator, coal fired plants

The uncertainty in failure rate is calculated using a Chi2-distribution with Excel. For a number of failures larger than 50, a normal distribution with standard deviation equal to the square root of the mean value was used.

A plot of the failure rate per plant in Figure 6-1 on a logarithmic basis shows which plants have a higher than average fail rate. When 0 failures are present, classical Bayesian statistics are applied to estimate the uncertainty in failure rate by inputting 0 for the 5 % lowest and 1 ("a failure happens tomorrow") as the 95 % highest value with 0.5 failure as mean estimate. This only holds when a substantial exposure (operating) time is present. If only a few failures are present for a subset of plants, each of these plants might show a "high" failure rate, while this need not be the case.





## 7 UNCERTAINTY DUE TO DIFFERENCES BETWEEN PLANTS

The calculation of uncertainty in the average value if the whole population of plants would be homogeneous is small given a large number of failures. However, it is generally known that differences between plants spoil this small uncertainty making it substantially larger. How to calculate this is not yet state of the art. However, an approximation for this was found in the OREDA Handbooks [4] for example in that of 2015. If we use the same method, we arrive at the following numbers. We refer to the OREDA Handbook 2015 section: estimation procedures for "multi-Sample Problems" for the precise formulas and procedures.

| Initial estimate for failure rate |                   |                |           | uncertainty for hom                           | ogeneous set of plants |  |
|-----------------------------------|-------------------|----------------|-----------|-----------------------------------------------|------------------------|--|
|                                   |                   |                |           |                                               |                        |  |
| lambda                            | 2.56E-04          | / hr           | 5% lower  | 2.39E-04                                      |                        |  |
| stdeviation                       | 6.79E-04          |                | 95% upper | 2.74E-04                                      |                        |  |
|                                   |                   |                |           |                                               |                        |  |
| OREDA multi sam                   | pling for non-hom | logeneous sets |           | uncertainty for NON-homogeneous set of plants |                        |  |
|                                   |                   |                |           |                                               |                        |  |
| estimate lambda                   | 4.39E-04          |                | 5% lower  | 2.80E-06                                      | /hr                    |  |
| stdev                             | 7.91E-04          |                | 95% upper | 2.74E-03                                      | /hr                    |  |

#### Figure 7-1 Uncertainty in failure rate

The uncertainty in failure rate in Figure 7-1 ranges from  $2.39 \times 10^{-4} < X < 2.74 \times 10^{-5}$  with 602 failures if differences between plants are not considered. When differences are considered (the population is inhomogeneous) the range is  $2.80 \times 10^{-6} < X < 2.74 \times 10^{-3}$ .

Figure 6-1 seems to indicate the same when reading the uncertainties. Therefore, it appears that differences between plants should be taken into account more systematically, for instance in plant improvement projects. Figure 7-1 also indicates that the average may differ for the selection of plants and KKS code when differences between plants are taken into account (compare cell initial estimate failure rate vs multi sampling failure rate).





### 8 DETECTION OF OUTLIERS

Outliers may be present in data and may spoil patterns, regression lines, etc. when no outliers are considered. The type of statistics to handle such outliers is called Robust Statistics and is discussed for example by Rousseuw [2]. In the paper, practical procedures are given to deal with outliers.

If the classical average differs much from the median (the 50 % value), outliers may be present. Rousseuw proposes in such cases to use the median being a robust estimator, unlike the arithmetic average which is sensitive to outliers. In the printout of the database in Annex I therefore also the GEOMEAN is shown.

Secondly, in statistics a Gaussian distribution, a bell-type distribution is often used. Very few distributions in the practice of reliability engineering are perfectly Gaussian. The standard deviation, applicable for a Gaussian distribution, again is non-robust being sensitive to outliers. Therefore, Rousseuw proposes to use;

 $MAD = 1.483 \cdot median[x_i - median(x_i)]$ 

With j = 1,... n and i = 1,... n

MAD stands for median of absolute distances from the sample median.

The coefficient 1.483 is a correction factor to make the estimator consistent with the spread in a Gaussian distribution.

Now, an outlier is a value which differs from the majority of points. As a measure for this, the standardised distance (z-score) is calculated using the sample median T and MAD:

$$z_i = \frac{x_i - T}{MAD}$$

For the classical Gaussian distribution, the probability that  $abs(z_i) > 2.5$  is very small (< 1 %). Similarly, we can use the cut-off value for outliers using  $abs(z_i) > 2.5$  together with choosing the sample mean rather than the arithmetic average and the MAD variable rather than the standard deviation.

This was implemented in Excel by labelling all calculated outliers (using T, MAD and z<sub>i</sub>) automatically with the code for plant involved and colouring them red. Subsequently, simple linear regression lines were calculated <u>without</u> outliers.





#### 9 ANALYSIS OF AGEING

Due to differences in age of the plants and the number of years that plants have been contributing failure data to the database, the data for each plant does not cover the same period. This is called left and right censoring. Ageing is defined as the number of failures going up more than linearly with time. A simple model for ageing is the Crow [5] model, which takes into account both issues noted before. It is an ABAO (As Bad As Old) model, indicating that both repair and overhauls do not appear to influence the number of failures compared to the situation before a repair or overhaul, (although the derivative may decrease in time indicating an improvement).

The cumulative number of failures is given by:

$$N(t) = \alpha \cdot t^{\beta}$$

with

 $\alpha$  = parameter for the number of failures per hr

 $\beta$  = coefficient to describe ageing

t = time (hrs)

For t, calendar time since the start of operation is chosen, not the time since the first failure in the databases as we are interested in the life cycle of the plant. The use of operating time for t has not been implemented as this would require an estimate of the operating time at each failure which is a substantial data effort. It should be noted however that for plants having been mothballed or having had a HILP (high impact, low probability), this period should be subtracted.

With  $\beta = 1$ , no ageing is present and N(t) is approximately a straight line. The coefficient  $\alpha$  in that case is equal to the failure rate  $\lambda$ . With  $\beta > 1$ , N(t) curves upward and ageing appears to be present. With  $\beta < 1$ , the gradient of N(t) decreases, and teething problems appear to be present. The coefficient  $\alpha$  in these cases, while having the dimension of failure rate, takes on values that can be orders of magnitude different from the classical failure rate as a function of  $\beta$ . In general, with increasing  $\beta$ ,  $\alpha$  will be smaller. The values of  $\alpha$  and  $\beta$  are dependent on each other.

The calculations are shown in Figure 9-1 (only 4 out of 224 plants shown). For full formulas, reference is given to the original 1990 IEEE symposium publication or [5]. Figure 9-1 shows that plants 2 and 3 were not selected (setting hours in the database to 1, therefore very low) while some failure data have other KKS codes and are therefore not applicable (the log of failure time is left open). Furthermore, only failures further away in time than the cut-off criterion (set at 168 hrs or 1 week) were take into account, as per rows 245, 247, 248 and 250.

The calculation starts with an initial estimation of  $\beta$  and usually  $\beta = 1$  is a good choice leading to convergence. By using the Goal Seek procedure in Excel, making the beta difference = 0, a value of  $\beta$  is calculated that fits the data best. The procedure does not always converge, for example when 1 power plant with many failure data is present, which spoils the pattern. Typical  $\beta$ -values would be lower than 0.4 or higher than 5. In these cases the analyst should keep the coefficient at  $\beta = 1$ . This is coloured orange in the overall data tables.





#### 11 COMPLETE DATA REPORT

An example of a complete data report for coal, lignite, gas and oil-fired plants (no CCGTs) of KKS HNC (induced flue gas fans) is shown in the next figures. All data reports following from the Pareto analysis plus some extra are gathered in Appendix F to H. Some extreme data points were not plotted being extreme outliers making the magnitude of other data points difficult to read.

The standard reports for HNC are given in Figures 11-1 – 11-7.





| Duo fossil fired unit Mono fossil fired unit |                   | KKS Code    | HNC              | Level                  | KKS       |                      | Repeat filter: within  | 168                        |                   |   |
|----------------------------------------------|-------------------|-------------|------------------|------------------------|-----------|----------------------|------------------------|----------------------------|-------------------|---|
| Hard Coal Lignite Oil                        |                   |             |                  | Induced flue gas fans  |           |                      |                        |                            | hrs               |   |
|                                              | Excl. until 99 MW |             |                  |                        |           |                      |                        |                            |                   |   |
|                                              | Plot no           | Include<br> | Power Plant Unit | Type of Power Plant    | Fuel      | Capacity net<br>[MW] | Age<br>max in database | Average<br>Operating Hours | Years in database |   |
|                                              | 1                 | 1           | 1                | Mono fossil fired unit | Hard Coal | 400 - 599 MW         | 35                     | 2821                       | 5                 |   |
|                                              | 4                 | 1           | 4                | Mono fossil fired unit | Hard Coal | 600 - 999 MW         | 35                     | 6366                       | 5                 |   |
|                                              | 5                 | 1           | 5                | Mono fossil fired unit | Hard Coal | 600 - 999 MW         | 28                     | 8067                       | 5                 |   |
|                                              | 7                 | 1           | 7                | Mono fossil fired unit | Hard Coal | 600 - 999 MW         | 39                     | 4376                       | 10                |   |
|                                              | 8                 | 1           | 8                | Mono fossil fired unit | Hard Coal | 600 - 999 MW         | 33                     | 3781                       | 1                 |   |
|                                              | 9                 | 1           | 9                | Duo fossil fired unit  | Lignite   | 400 - 599 MW         | 42                     | 7767                       | 11                |   |
|                                              | 10                | 1           | 10               | Duo fossil fired unit  | Lignite   | 400 - 599 MW         | 40                     | 7953                       | 12                |   |
|                                              | 11                | 1           | 11               | Mono fossil fired unit | Lignite   | 600 - 999 MW         | 20                     | 7811                       | 12                |   |
|                                              | 12                | 1           | 12               | Mono fossil fired unit | Lignite   | 600 - 999 MW         | 9                      | 6935                       | 8                 |   |
|                                              | 17                | 1           | 17               | Mono fossil fired unit | Lignite   | 200 - 399 MW         | 34                     | 5744                       | 5                 |   |
|                                              | 21                | 1           | 21               | Mono fossil fired unit | Hard Coal | 100 - 199 MW         | 44                     | 6182                       | 6                 |   |
|                                              | 25                | 1           | 30               | Duo fossil fired unit  | Hard Coal | 200 - 399 MW         | 43                     | 3576                       | 6                 |   |
|                                              | 26                | 1           | 31               | Mono fossil fired unit | Hard Coal | 200 - 399 MW         | 35                     | 5387                       | 6                 |   |
|                                              | 30                | 1           | 37               | Mono fossil fired unit | Hard Coal | 200 - 399 MW         | 49                     | 4436                       | 2                 |   |
|                                              | 31                | 1           | 38               | Mono fossil fired unit | Hard Coal | 200 - 399 MW         | 51                     | 5860                       | 1                 |   |
|                                              | 32                | 1           | 39               | Mono fossil fired unit | Hard Coal | 200 - 399 MW         | 31                     | 6416                       | 1                 |   |
|                                              | 33                | 1           | 40               | Mono fossil fired unit | Oil       | 200 - 399 MW         | 47                     | 456                        | 12                |   |
| 1                                            |                   |             |                  |                        |           |                      |                        |                            |                   | • |

| 180 | 1 | 210 | Mono fossil fired unit | Hard Coal | 100 - 199 MW | 53 | 1539 | 5  |
|-----|---|-----|------------------------|-----------|--------------|----|------|----|
| 181 | 1 | 211 | Mono fossil fired unit | Hard Coal | 100 - 199 MW | 59 | 6346 | 3  |
| 182 | 1 | 212 | Mono fossil fired unit | Hard Coal | 100 - 199 MW | 58 | 5982 | 3  |
| 183 | 1 | 213 | Mono fossil fired unit | Hard Coal | 600 - 999 MW | 40 | 3406 | 1  |
| 184 | 1 | 214 | Duo fossil fired unit  | Lignite   | 100 - 199 MW | 57 | 7865 | 4  |
| 185 | 1 | 215 | Mono fossil fired unit | Lignite   | 100 - 199 MW | 53 | 7281 | 4  |
| 186 | 1 | 216 | Duo fossil fired unit  | Lignite   | 200 - 399 MW | 55 | 8080 | 11 |
| 187 | 1 | 217 | Duo fossil fired unit  | Lignite   | 200 - 399 MW | 53 | 7647 | 11 |
| 188 | 1 | 218 | Mono fossil fired unit | Lignite   | 600 - 999 MW | 46 | 7548 | 11 |
| 189 | 1 | 219 | Mono fossil fired unit | Lignite   | 600 - 999 MW | 45 | 7516 | 11 |
| 190 | 1 | 222 | Mono fossil fired unit | Hard Coal | 200 - 399 MW | 47 | 4169 | 8  |
| 191 | 1 | 223 | Mono fossil fired unit | Hard Coal | 600 - 999 MW | 7  | 1419 | 6  |
| 192 | 1 | 224 | Mono fossil fired unit | Hard Coal | 600 - 999 MW | 44 | 4866 | 12 |

\_\_\_\_\_

Figure 11--1 Plants in standard report



#### APPENDIX F01 - Standard reports and plots coal - Duo fossil fired unit, Mono fossil fired unit - KKS code: BAT

| Due feest fired     | it Monofeed for       | d unit           | KKC Code               | DAT                | Loval        | VVC             |                   | Donoot filter within  | 4.00 1  |
|---------------------|-----------------------|------------------|------------------------|--------------------|--------------|-----------------|-------------------|-----------------------|---------|
| Und Tossil Tired un | IN INIONO TOSSII fire | eu unit          | NNS CODE               | DAI                | Levei        | NKS             |                   | Repeat filter: within | 168 hrs |
|                     |                       |                  |                        | Stepup transformer |              |                 |                   |                       |         |
| Excl. until 99 MW   |                       |                  |                        |                    |              |                 |                   |                       |         |
|                     |                       |                  |                        |                    |              |                 |                   |                       |         |
| Plot no             | Include               | Power Plant Unit | Type of Power Plant    | Fuel               | Capacity net | Age             | Average Operating | Years in database     |         |
|                     |                       |                  |                        |                    |              | max in database | Hours             |                       |         |
|                     |                       |                  |                        |                    |              |                 |                   |                       |         |
| 1                   | 1                     | 1                | Mono fossil fired unit | Hard Coal          | 400 - 599 MW | 35              | 2821              | 5                     |         |
| 4                   | 1                     | 4                | Mono fossil fired unit | Hard Coal          | 600 - 999 MW | 35              | 6366              | 5                     |         |
| 5                   | 1                     | 5                | Mono fossil fired unit | Hard Coal          | 600 - 999 MW | 28              | 8067              | 5                     |         |
| 7                   | 1                     | 7                | Mono fossil fired unit | Hard Coal          | 600 - 999 MW | 39              | 4376              | 10                    |         |
| 8                   | 1                     | 8                | Mono fossil fired unit | Hard Coal          | 600 - 999 MW | 33              | 3781              | 1                     |         |
| 21                  | 1                     | 21               | Mono fossil fired unit | Hard Coal          | 100 - 199 MW | 44              | 6182              | 6                     |         |
| 25                  | 1                     | 30               | Duo fossil fired unit  | Hard Coal          | 200 - 399 MW | 43              | 3576              | 6                     |         |
| 26                  | 1                     | 31               | Mono fossil fired unit | Hard Coal          | 200 - 399 MW | 35              | 5387              | 6                     |         |
| 30                  | 1                     | 37               | Mono fossil fired unit | Hard Coal          | 200 - 399 MW | 49              | 4436              | 2                     |         |
| 31                  | 1                     | 38               | Mono fossil fired unit | Hard Coal          | 200 - 399 MW | 51              | 5860              | 1                     |         |
| 32                  | 1                     | 39               | Mono fossil fired unit | Hard Coal          | 200 - 399 MW | 31              | 6416              | 1                     |         |
| 55                  | 1                     | 62               | Mono fossil fired unit | Hard Coal          | 100 - 199 MW | 31              | 7957              | 11                    |         |
| 56                  | 1                     | 63               | Mono fossil fired unit | Hard Coal          | 100 - 199 MW | 31              | 7855              | 11                    |         |
| 57                  | 1                     | 64               | Mono fossil fired unit | Hard Coal          | 100 - 199 MW | 55              | 974               | 6                     |         |
| 58                  | 1                     | 65               | Mono fossil fired unit | Hard Coal          | 100 - 199 MW | 54              | 1135              | 6                     |         |
| 59                  | 1                     | 66               | Mono fossil fired unit | Hard Coal          | 600 - 999 MW | 35              | 4594              | 11                    |         |
| 60                  | 1                     | 68               | Mono fossil fired unit | Hard Coal          | 600 - 999 MW | 26              | 5735              | 5                     |         |
| 63                  | 1                     | 71               | Mono fossil fired unit | Hard Coal          | 600 - 999 MW | 33              | 4963              | 12                    |         |
| 67                  | 1                     | 75               | Mono fossil fired unit | Hard Coal          | 600 - 999 MW | 35              | 5619              | 11                    |         |
| 83                  | 1                     | 91               | Mono fossil fired unit | Hard Coal          | 200 - 399 MW | 43              | 5204              | 6                     |         |
| 84                  | 1                     | 92               | Mono fossil fired unit | Hard Coal          | 200 - 399 MW | 43              | 4700              | 6                     |         |
| 85                  | 1                     | 93               | Mono fossil fired unit | Hard Coal          | 200 - 399 MW | 43              | 5388              | 6                     |         |
| 86                  | 1                     | 94               | Mono fossil fired unit | Hard Coal          | 200 - 399 MW | 43              | 5146              | 6                     |         |
| 87                  | 1                     | 95               | Mono fossil fired unit | Hard Coal          | 200 - 399 MW | 42              | 5147              | 6                     | _       |
| 88                  | 1                     | 96               | Mono fossil fired unit | Hard Coal          | 200 - 399 MW | 42              | 5008              | 6                     | _       |
| 89                  | 1                     | 97               | Mono fossil fired unit | Hard Coal          | 200 - 399 MW | 47              | 5896              | 10                    | _       |
| 91                  | 1                     | 99               | Mono fossil fired unit | Hard Coal          | 200 - 399 MW | 44              | 3922              | 6                     | _       |
| 93                  | 1                     | 102              | Mono fossil fired unit | Hard Coal          | 400 - 599 MW | 67              | 4941              | 1                     | _       |
| 96                  | 1                     | 105              | Mono fossil fired unit | Hard Coal          | 200 - 399 MW | 55              | 4809              | 1                     | 4       |
| 97                  | 1                     | 106              | Mono fossil fired unit | Hard Coal          | 200 - 399 MW | 55              | 5380              | 1                     | 4       |
| 98                  | 1                     | 107              | Mono fossil fired unit | Hard Coal          | 200 - 399 MW | 55              | 4317              | 1                     | 4       |
| 99                  | 1                     | 108              | Mono fossil fired unit | Hard Coal          | 200 - 399 MW | 55              | 5825              | 1                     | 4       |
| 106                 | 1                     | 121              | Mono fossil fired unit | Hard Coal          | 100 - 199 MW | 49              | 7472              | 12                    | 4       |
| 107                 | 1                     | 122              | Mono fossil fired unit | Hard Coal          | 100 - 199 MW | 37              | 7186              | 12                    | 4       |
| 110                 | 1                     | 125              | Mono fossil fired unit | Hard Coal          | 600 - 999 MW | 41              | 5938              | 8                     | 4       |
| 112                 | 1                     | 130              | Mono fossil fired unit | Hard Coal          | 100 - 199 MW | 30              | 5262              | 1                     | 4       |
| 132                 | 1                     | 151              | Mono fossil fired unit | Hard Coal          | 200 - 399 MW | 43              | 5605              | 1                     | 4       |
| 133                 | 1                     | 152              | Mono fossil fired unit | Hard Coal          | 200 - 399 MW | 32              | 6281              | 1                     | 4       |
| 135                 | 1                     | 154              | Mono fossil fired unit | Hard Coal          | 400 - 599 MW | 35              | 4444              | 11                    | 4       |
| 136                 | 1                     | 155              | Mono fossil fired unit | Hard Coal          | 600 - 999 MW | 7               | 3787              | 6                     | 4       |
| 143                 | 1                     | 163              | Mono fossil fired unit | Hard Coal          | 400 - 599 MW | 26              | 6250              | 10                    | 4       |
| 146                 | 1                     | 168              | Mono fossil fired unit | Hard Coal          | 200 - 399 MW | 52              | 6840              | 12                    | 4       |
| 147                 | 1                     | 169              | Mono fossil fired unit | Hard Coal          | 200 - 399 MW | 51              | 6347              | 12                    | 4       |
| 148                 | 1                     | 170              | Mono fossil fired unit | Hard Coal          | 200 - 399 MW | 44              | 5105              | 6                     | 4       |
| 149                 | 1                     | 171              | Mono fossil fired unit | Hard Coal          | 200 - 399 MW | 43              | 5189              | 6                     | 4       |
| 150                 | 1                     | 172              | Mono fossil fired unit | Hard Coal          | 600 - 999 MW | 35              | 3639              | 6                     |         |







#### Cumulative failures versus fraction of time operating

#### Cumulative failures versus time since first failure















Project name: Report title:

Customer: Customer contact: Date of issue: Project No.: Organisation unit: Report No.: Reliability Indicators with KISSY new data 2009 to 2020

A vgbe & DNV project

2023-07-05 10319859 EMS-TT 23-0027, rev 1



Energy Systems vgbe energy e.V. Deilbachtal 173 45257 Essen Germany www.vgbe.energy | www.vgbe.services

DNV Netherlands B.V. Utrechtseweg 310-B50 6812 AR Arnhem The Netherlands