Important notice – VGB copyright material

VGB-Standards, hereafter referred to as “work”, including all articles and images, are protected by international copyright. VGB PowerTech is responsible to carry out the exploitation of the copyrights.

The term “work” covers this PDF-file and its content. The copyright covers the work in its entirety and its constituent parts, such as: text, tables, diagrams, photographs and illustrations.

Any use and/or reproduction of this material without the prior written consent of VGB PowerTech e.V., is forbidden and will constitute an infringement of copyright law, liable to prosecution. Any unauthorised reproduction such as: photocopies, reprints, translations, its transfer: onto micro-film, entry into electronic data bases, to the Internet, or to a Web Site, saving onto CD-ROM or other digital media, any and all forms of digital storage and or reproduction will constitute an infringement of copyright.

Disclaimer

VGB-Standards are based on the collective experience and recommendations of PowerTech e.V. and its panel of experts and represent the best knowledge at the time of publication. No claim regarding its completeness is made as a matter of principle because of the numerous factors which must be taken into account and of course due to the dynamic process of continuous development.

VGB-Standards can be used to reach and agree upon detailed specifications between the purveyor and the purchaser.

Application of VGB Standards is carried out at the user's own risk. VGB PowerTech e.V and contributors to VGB Standards make no claim regarding its absolute accuracy and therefore accept no legal liability in the event of any claim relating to or resulting from its application.

Treatment of proposing amendments

Amendments can be sent to the e-mail address vgb.standard@vgb.org. The subject line should contain the exact specification of the relevant document in order to clearly assign the e-mail content to the appropriate VGB-Standard.
Preface

The peculiarities of permit and licence requirements, planning, construction and assembly, maintenance and operational upgrades (retrofits) in nuclear power plants are numerous and need to be handled in coordination with the responsible (national, province or regional) government authorities and agencies, with full consideration for all standards and requirements for structural and plant engineering.

This Standard is intended to provide planners, constructors, suppliers, operators, authorities and other stakeholders with a document based on the principles of German nuclear legislation, which puts together the special structural requirements and procedures for the planning and construction of nuclear power plants. Reference is made to the respective regulations, rules, technical codes and standards, etc.

A project group, set up with the backing of the VGB "Civil Engineering in Nuclear Power Plants" Working Panel and involving all the disciplines associated with structural engineering, has identified and described the most up-to-date experience including knowledge gained from on-going new build and upgrade projects. The names of those who gave their input are listed in the index of authors.

We take this opportunity to thank them all for their qualified contributions.

We welcome any sound proposals for the amendment or supplementation of this Standard. Please address them to the VGB Secretariat for further consideration.

Essen, April 2013

VGB PowerTech e.V.
Authors
- Carsten Becker AREVA NP GmbH, Offenbach
- Michael Borgerhoff Stangenberg und Partner Ingenieur-GmbH, Bochum
- Katrin Borowski RWE Power AG, Essen
- Dr. Sascha Eberth E.ON Kernkraft GmbH, Hannover
- Dr. Alexander Fischer HOCHTIEF Solutions AG, Frankfurt/M.
- Wolfgang Fuchs HOCHTIEF Solutions AG, Frankfurt/M.
- Erwin Hörchner E.ON New Build & Technology GmbH
- Thomas Janzik Zerna Ingenieure GmbH, Bochum
- Ernst Jung Ed. Züblin AG, Duisburg
- Dr. Volker Kaltofen CSK Ingenieurgesellschaft mbH & Co. KG, Dortmund
- Jürgen Lenz VGB PowerTech e.V., Essen
- Dr. Rüdiger Meiswinkel E.ON Kernkraft GmbH, Hannover
- Dr. Julian Meyer HOCHTIEF Solutions AG, Frankfurt/M.
- Dr. Siegfried Mörschardt Vattenfall Europe Nuclear Energy GmbH, Hamburg
- Dr. Philippe Renault Swiss Nuclear, Olten/Schweiz
- Dr. Klaus Schiffer RWE Power AG, Essen
- Dr. Franz-Hermann Schlüter SMP Ingenieure im Bauwesen GmbH, Karlsruhe
- Franz Schmitz RWE Power AG, Biblis
- Prof. Dr. Jürgen Schnell TU Kaiserslautern, Kaiserslautern
- Gerd Schuster EnBW Kernkraft GmbH, Neckarwestheim
- Dr. Jürgen Strauß Heitkamp Ingenieur- und Kraftwerksbau GmbH, Herne
- Dr. Kamal Tachwaly Zerna Ingenieure GmbH, Bochum
- Dr. Thilo von Berlepsch E.ON Kernkraft GmbH, Hannover
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Licensing procedure</td>
<td>12</td>
</tr>
<tr>
<td>2.1</td>
<td>Legal basis</td>
<td>12</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Law on nuclear activities</td>
<td>12</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Building regulations and other areas of law</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Responsible government authorities</td>
<td>13</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Government nuclear licensing authorities</td>
<td>13</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Building permit and licensing authorities for nuclear facilities</td>
<td>13</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Nuclear regulators</td>
<td>14</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Building supervision</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Licensing procedure for installations under Article 7 AtG</td>
<td>15</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Nuclear licensing procedure</td>
<td>15</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Environmental assessment</td>
<td>15</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Disclosure and public debate</td>
<td>16</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Building permit procedure</td>
<td>16</td>
</tr>
<tr>
<td>2.3.4.1</td>
<td>Civil engineering in the total of partial licensing procedure</td>
<td>16</td>
</tr>
<tr>
<td>2.3.4.2</td>
<td>Approval of material modification</td>
<td>17</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Conditions and supervision</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Documents for license approval</td>
<td>17</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Nuclear licensing documents</td>
<td>17</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Documents required for planning approval</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Documentation</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>Apportionment between civil and plant engineering</td>
<td>20</td>
</tr>
<tr>
<td>3.1</td>
<td>General remarks</td>
<td>20</td>
</tr>
<tr>
<td>3.2</td>
<td>Defining the interfaces</td>
<td>20</td>
</tr>
</tbody>
</table>
3.2.1 Geometrical definition ... 20
3.2.2 Influences and requirements from plant operation 21
3.2.3 Effects of settling of a structure on plant components at expansion joints ... 21
3.2.4 Interaction between project phases ... 21
3.3 Summary .. 24
4 Actions .. 25
4.1 General remarks ... 25
4.2 Permanent and variable actions .. 26
4.3 Extraordinary actions ... 26
4.4 Internal actions .. 26
4.4.1 Leaks and pipe ruptures ... 26
4.4.2 Other plant internal events ... 28
4.5 External events .. 28
4.5.1 Seismic events .. 28
4.5.1.1 General remarks .. 28
4.5.1.2 Definitions of earthquake impact .. 32
4.5.1.3 Structural element analysis ... 33
4.5.2 Flood ... 35
4.5.2.1 General remarks .. 35
4.5.2.2 Inland locations .. 35
4.5.2.3 Coastal locations ... 36
4.5.3 Airplane crash .. 37
4.5.3.1 General remarks .. 37
4.5.3.2 Load-time-function ... 38
4.5.3.3 Wreckage loads and impact of fires ... 39
4.5.4 Explosive pressure wave (chemical explosion) 40
5 Building modelling ... 42
5.1 3D-planning in construction ...42
5.2 Planning models in nuclear engineering ..42
5.3 Boundaries and limits of 3D planning ...43
5.4 Standardization of software for 3D planning
 – FE calculation and project management ..44
5.5 3D FE models (static and dynamic programs)45
5.6 Data communication between the 3D planning models
 by means of BIM ...46
5.7 Collision-free 3D planning, freezing the model, 2D drawing copy46
5.8 Structural planning ..47

5.8.1 3D plant design model ...47
5.8.2 Structural model ...48
5.8.3 Design engineering by the construction contractor49
5.9 Specifications for the numerical model ..50
5.10 Special requirements for the numerical model in case of dynamic
 influences (earthquake) ..50

5.10.1 General requirement ...50
5.10.2 Rigidity modelling ...51
5.10.3 Mass modelling ...52
5.10.4 Modelling hydrodynamic effects ..52
5.10.5 Dynamic decoupling criteria ...52
5.10.6 Soil-structure interaction (SSI) ..53
5.11 Output of construction design plans and drafting of the construction
 drawings, final documentation and archiving53

6 Structural design ..56

6.1 General remarks ...56
6.2 Verifications ...56

6.2.1 Limit states ..56
6.2.2 Partial safety and combination factors for actions58
6.2.3 Partial safety factors for structural resistance58
6.3 Engineering information for structural elements made of concrete,
 steel reinforced concrete and pre-stressed concrete61

6.3.1 Strength ...61
6.3.2 Shear force ... 62
6.3.3 Punching shear .. 62
6.4 Engineering information for steel structural members 65
6.5 Special features of containment dimensioning 66
6.5.1 Specifications for containments 66
6.5.2 Steel containment around the reactor 66
6.5.3 Pre-stressed concrete containment with steel liner 67
6.5.4 Reinforced concrete containment with steel liner 67

7 Structural watertightness ... 69
7.1 General remarks ... 69
7.2 System description of a “white tank” 69
7.2.1 General standards ... 69
7.2.2 Engineering principles ... 70
7.2.2.1 Conditions of use ... 70
7.2.2.2 Design principles .. 70
7.2.2.3 Condensation .. 72
7.2.3 Special requirements .. 72
7.2.4 Calculation and dimensioning 72
7.2.5 Engineering design and expansion joints 72
7.2.6 Penetrations .. 72
7.3 Responsibilities .. 73
7.4 Monitoring/quality assurance .. 73
7.5 Repairs ... 73

8 Anchor technology ... 74
8.1 General remarks .. 74
8.2 Special requirements for nuclear power plant anchors 74
8.3 Types of fastenings ... 74
8.3.1 Cast-in-place fastenings .. 74
8.3.2 Post-installed fastenings ... 75