VGB-Standard

Application of data reconciliation in accordance with VDI 2048

VGB-S-009-S-00;2012-03.EN

First edition, 2012

Published by
VGB PowerTech e.V.

Obtainable from:
VGB PowerTech Service GmbH
Verlag technisch-wissenschaftlicher Schriften
Postfach 10 39 32, 45039 Essen, Germany
Tel. +49 201 8128-200
Fax +49 201 8128-329
E-mail: mark@vgb.org

ISBN 978-3-86875-382-0

All rigths reserved VGB PowerTech, 2012.
www.vgb.org
Important notice – VGB copyright material

VGB-Standards hereafter referred to as “work”, including all articles and images, are protected by international copyright. VGB PowerTech is responsible to carry out the exploitation of the copyrights.

The term “works” covers this PDF-file and its content. The copyright covers the work in its entirety and its constituent parts, such as: text, tables, diagrams, photographs and illustrations.

Any use and / or reproduction of this material without the prior written consent of VGB PowerTech e.V., is forbidden and will constitute an infringement of copyright law, liable to prosecution. Any unauthorised reproduction such as: photocopies, reprints, translations, its transfer: onto micro-film, entry into electronic data bases, to the Internet, or to a website, saving onto CD-ROM or other digital media, any and all forms of digital storage and/or reproduction will constitute an infringement of copyright.

Disclaimer

VGB-Standards are based on the collective experience and recommendations of PowerTech e.V. and its panel of experts and represent the best knowledge at the time of publication. No claim regarding its completeness is made as a matter of principle because of the numerous factors, which must be taken into account and of course due to the dynamic process of continuous development.

VGB-Standards can be used to reach and agree upon detailed specifications between the purveyor and the purchaser.

Application of VGB-Standards is carried out at the user’s own risk. VGB PowerTech e.V. and contributors to VGB-Standards make no claim regarding its absolute accuracy and therefore accept no legal liability in the event of any claim relating to or resulting from its application.
Preface

Data reconciliation is frequently discussed in connection with IT systems for optimization of technical processes in industry.

Data reconciliation as set out in VDI 2048 is indeed an interesting and technically complex process with which the quality of the operational process data and the indicators based on those data can be significantly improved.

The technical and organizational conditions to be fulfilled in the implementation of this process are however less familiar. Publications on practical experience have to date been rare, mainly originating from the manufacturers of the relevant software tools.

This VGB Standard is intended to fill that gap. Its purpose is in particular to present and explain the method of data reconciliation to the plant operators as a modern, proven opportunity to improve operational processes.

This recommendation does not devote attention to the complex mathematical relationships involved, as these are described in VDI 2048.

At the suggestion of VDI and following several meetings of specialists, a joint team comprising representatives of VDI and members of the VGB Working Panel on Acceptance and Control Tests was formed and took on the work of drafting this standard. VGB wishes to thank the companies involved in its compilation and the staff delegated to perform that work.

Essen, November 2011
VGB PowerTech e.V.
Authors
This VGB Standard was complied by the VGB Project Group “Application of VDI 2048”.

Members of the Project Group:
- Dr. Jürgen Brandt RWE Power, Grevenbroich, Germany
- Dr. Peter Deeskow STEAG Energy Services, Essen, Germany
- Dr.-Ing. Ernst-Günter Hencke VDI, Düsseldorf, Germany
- Dr. Josef Jansky BTB Jansky, Leonberg, Germany
- Prof. Kalitventzeff Belsim S.A., Belgium
- Dipl.-Ing. Zdenek Kubin CEZ a.s., Praha, Czech Republic
- Dipl.-Ing. Jörg Kaiser VGB PowerTech e.V., Essen, Germany
- Dr. Kristijan Lackner formerly VGB PowerTech e.V., Essen, Germany
- Dipl.-Ing. Andreas Knieschke Vattenfall Europe PowerConsult, Vetschau, Germany
- Dipl.-Ing. Richard Kitzberger AIT Austrian Institute of Technology, Vienna
- Dr. Stefan Raab Siemens, Erlangen, Germany
- Dr. Andreas Mayerhofer Siemens, Mülheim, Germany
- Dr.-Ing. Dietmar Schmidt Siemens, Erlangen, Germany
- Dr. Siegfried Streit formerly Wiener Stadtwerke, Austria
- Dipl.-Ing. Jürgen Tegethoff Alstom (Switzerland) Ltd., Baden, Switzerland
Table of Contents

1 Introduction ... 8

2 Scope of application and objective ... 9

2.1 Scope of application ... 9

3 Objective ... 10

3.1 Distinction from the existing standards for acceptance test measurements 10

4 Technical fundamentals ... 12

4.1 VDI Guideline 2048 ... 12

4.2 Terms and definitions .. 12

4.2.1 Data reconciliation ... 12

4.2.2 Quality criteria of VDI 2048 ... 13

4.2.3 Special terms in VDI 2048 ... 14

4.2.3.1 Confidence interval ... 14

4.2.3.2 Covariances .. 15

4.2.3.3 Doubtful measured values .. 15

4.2.3.4 Relative error square sum (ESS) .. 15

4.2.3.5 Relative improvements .. 15

4.2.3.6 Convergence .. 16

4.2.4 Sensitivity analysis .. 16

4.2.5 Quasi steady-state plant condition ... 16

4.2.6 Plant Performance Monitoring .. 17

4.3 Essential functionalities ... 17

4.4 Potential sources of errors and risks .. 17

5 Operational implementation .. 19

5.1 Technical project issues ... 19

5.1.1 Project objectives ... 19

5.1.2 Metrological and IT system requirements .. 19

5.1.2.1 Metrological system requirements .. 19

5.1.2.2 IT system requirements ... 20

5.1.3 Modelling and updating of the model .. 20

5.1.3.1 Requirements for a reconcilable model .. 20

5.1.3.2 Principles of modelling .. 21

5.1.3.3 Confidence intervals ... 23

5.1.3.4 Quality criteria .. 25

5.1.3.5 Functional testing of a data reconciliation system 26

5.1.3.6 Procedure in creation of the model ... 27

5.2 Organizational project implementation .. 29

5.2.1 Project phases/Project structure ... 29

5.2.1.1 Project preparation ... 29

5.2.1.2 Process data analysis .. 29

5.2.1.3 Implementation of the time series archive 29
5.2.1.4 Adaptation of the model and testing phase ... 29
5.2.1.5 Acceptance testing .. 30
5.2.1.6 Model extension (optional) ... 30
5.2.1.7 Training .. 30
5.2.2 Know-how required .. 30
5.2.3 Responsibilities ... 32
5.2.4 Schedules .. 33
5.2.5 System maintenance .. 34

6 Practical hints and experience gained .. 36
6.1 Implementation in the operational IT environment ... 36
6.1.1 Hardware requirements ... 36
6.1.2 System configuration and data interfaces ... 36
6.2 Incorporation in higher-level IT systems ... 38
6.3 Incorporation in the business processes of the company ... 39
6.4 Notes for the avoidance of errors and problems ... 40
6.5 Example application .. 40

7 Bibliography ... 42