VGB-Standard

Feed Water, Boiler Water and Steam Quality for Power Plants / Industrial Plants

VGB-S-010-T-00;2011-12.EN
Third edition 2011
(formerly VGB-R 450 Le)

Editor:
VGB PowerTech e.V.

Publisher:
VGB PowerTech Service GmbH
Verlag technisch-wissenschaftlicher Schriften
Klinkestr. 27-31, 45136 Essen
Phone: +49 201 8128-200
Fax: +49 201 8128-329
E-Mail: mark@vgb.org
ISBN 978-3-86875-381-3

All rights reserved, VGB PowerTech.
www.vgb.org
Important notice – VGB copyright material

VGB-Standards, hereafter referred to as “work”, including all articles and images, are protected by international copyright.

The term “work” covers this PDF-file and its content. The copyright covers the work in its entirety and its constituent parts, such as: text, tables, diagrams, photographs and illustrations.

Any use and/or reproduction of this material without the prior written consent of VGB PowerTech e.V., is forbidden and will constitute an infringement of copyright law, liable to prosecution. Any unauthorised reproduction such as: photocopies, reprints, translations, its transfer: onto micro-film, entry into electronic data bases, to the Internet, or to a Web Site, saving onto CD-ROM or other digital media, any and all forms of digital storage and or reproduction will constitute an infringement of copyright.

Transfer of this document, printing, copying or reproducing this work or parts thereof in any way for or by third parties is not permitted.

Disclaimer

VGB-Standards are based on the collective experience and recommendations of PowerTech e.V. and its panel of experts and represent the best knowledge at the time of publication. No claim regarding its completeness is made as a matter of principle because of the numerous factors which must be taken into account and of course due to the dynamic process of continuous development.

VGB-Standards can be used to reach and agree upon detailed specifications between the purveyor and the purchaser.

Application of VGB Standards is carried out at the user's own risk. VGB PowerTech e.V. and contributors to VGB Standards make no claim regarding its absolute accuracy and therefore accept no legal liability in the event of any claim relating to or resulting from its application.
Preface to the 2011 edition

The present VGB-Standard summarises the experiences gained within water-steam chemistry and is the work of a project group under the VGB Technical Committee Chemistry. The following co-workers were involved in the revision of the VGB-Standard:

- Karol Daucik, DONG Energy Power, DK
- Dr. Hans-Jürgen Krabbe, RWE Power
- Dr. Frank Udo Leidich, Alstom Power Systems
- Armin Maier, TÜV Süd
- Prof. Dr. Herwig Maier, EnBW Kraftwerke AG
- Adelja Markert, Vattenfall Europe Generation
- Siegfried Neuhaus, E.ON New Build and Technology
- Karen Opolka, Vattenfall Europe Generation
- Dr. Dittmar Rutschow, VGB PowerTech e.V.
- Michael Rziha, Siemens AG
- Hans-Günter Seipp
- Erik Flemming Smitshuysen, DONG Energy Power, DK
- Dr. Anke Söllner, Siemens AG
- Dr. Karsten Normann Thomsen, Vattenfall A/S Thermal Engineering, DK
- Thomas Vogt, TÜV Süd
- Dr. Andreas Wecker, VGB PowerTech e.V.

They and everybody else who has actively taken part in the revision of the VGB-Standard are thanked sincerely for their effort. The VGB office will be happy to receive comments, further information and proposals for improvement for the next version of this VGB-Standard.

This VGB-Standard covers all pressure ranges applied to boilers generating heat, steam and/or electricity. In general the VGB-Standard covers steady state/full load operation of those boilers as well as start up operation mode by using action levels. This concept allows a quite flexible approach to combine requirements of the materials used throughout the water-steam cycle with economical needs of the plant operator.
The VGB-Standard does not deliver absolute limiting values of chemical parameters but demonstrates permissible operation ranges to achieve minimal corrosion within the water-steam cycle and to reach an optimised lifetime of the plant.

Essen, December 2011

VGB PowerTech e.V.
Preface to the 2004 edition

EPPSA, FDBR and VGB PowerTech hereby present a European Guideline for Feed Water, Boiler Water and Steam Quality for Power Plants / Industrial Plants. This new guideline replaces the former "VGB Guideline for Boiler Feed Water, Boiler Water and of Steam Generators with a Permissible Operating Pressure > 68 bar, October 1988 Edition".

The present Guideline is the work of a joint European Technical Committee with representatives of EPPSA, FDBR and VGB from most EU countries. The Technical Committees of these organisations have discussed and agreed this guideline.

The following co-workers were involved in preparing this new guideline:

- P. Colman, ESB
- K. Daucik, Elsam Engineering
- M. de Wispelaere, Laborelec
- D. Foussat, Alstom Power Boilers
- C. Fraikin, C.M.I. Utility Boilers
- B. Hausmann, FDBR
- M. Herberg, Alstom Power Boiler
- L. Höhenberger, TÜV Süddeutschland
- B. Hughes, px limited Teesside Power Station
- Dr. S. Kemppinen, Foster Wheeler Energia
- T. Ruohola, Kvaerner Power
- Dr. U. Staudt, VGB PowerTech
- Dr. R. Svoboda, Alstom Power
- U. Teutenberg, Babcock Hitachi Europe
- Dr. R. Truppat, VGB PowerTech
- Dr. U. Vogt, TÜV Süddeutschland
- R. Wulff, Siemens Power Generation

The reader should be aware, that this guideline covers all pressure ranges applied to boilers generating heat, steam and/or electricity. In general the guideline covers steady state/full load operation of those boilers as well as start up operation mode by using action levels for the first time. This concept allows a quite flexible approach to combine requirements of the materials used throughout the water-steam cycle with economical needs of the plant operator.
It should be pointed out that this guideline does not deliver absolute limiting values of chemical parameters but prefers to demonstrate reasonable areas of permissible operation ranges in respect to a minimal corrosion within the water-steam cycle to reach an optimised lifetime of the plant. Plant specific agreements on various parameters may supplement these guidelines.

Use it *cum grano salis* and as well *respice finem!*

Essen, December 2004

VGB PowerTech e.V.
Content

1 Scope .. 12
2 Definitions ... 13
3 Water-steam cycle system .. 15
 3.1 Feed water/feed water system .. 16
 3.2 Steam generator/boiler water system .. 17
 3.3 Turbine/steam system .. 18
 3.3.1 Backpressure Turbines .. 19
 3.4 Condensate/Condensing system .. 20
 3.4.1 Secondary condensates ... 20
 3.4.2 Process condensate return .. 20
4 Boiler types, materials and water chemistry .. 21
 4.1 Boiler types ... 21
 4.1.1 Water-tube boiler ... 21
 4.1.1.1 Once-through boilers .. 21
 4.1.1.2 Drum boiler ... 22
 4.1.3 Heat recovery steam generator .. 22
 4.1.2 Fire tube boiler (auxiliary steam boiler) .. 22
 4.1.3 Waste Heat Boiler, Process Gas Cooler, and steam generators from
 solar thermal plants ... 22
 4.2 Materials ... 23
 4.2.1 Steel materials .. 23
 4.2.2 Non-ferrous metals .. 23
 4.2.2.1 Copper alloys ... 24
 4.2.2.2 Aluminium alloys ... 24
 4.2.2.3 Titanium .. 24
 4.2.2.4 Special alloys .. 24
 4.3 Physicochemical processes ... 25
 4.3.1 Basics of material protection ... 25
 4.3.2 Deposition .. 26
 4.3.2.1 Deposition from water ... 26
4.3.2.2 Deposition from steam ... 27
4.3.3 Corrosion in the water-steam cycle .. 30
4.4 Physicochemical processes at the components 31
4.4.1 Steam generator ... 31
4.4.1.1 Erosion corrosion/stress corrosion cracking in exit ends of boiler tubes... 31
4.4.1.2 Hide-out/negative hide-out ... 31
4.4.1.3 Volatile alkalising agents/distribution equilibrium 32
4.4.1.4 Water separation for drum boilers ... 32
4.4.1.5 Spray-water for temperature control ... 33
4.4.1.6 Superheaters .. 34
4.4.2 Steam turbine .. 34
4.4.2.1 Turbine inlet valves ... 35
4.4.2.2 Control stage .. 35
4.4.2.3 Turbine rotor blades in the first condensate zone 35
4.4.2.4 Basis of rotor blades in low pressure turbines 36
4.4.2.5 Basis of stator blades in low pressure turbines 36
4.4.2.6 Steam lines for exhaust steam ... 36
4.4.3 Turbine condensers ... 36
4.4.3.1 Surface condensers (steam side tubing) ... 36
4.4.3.2 Air condensers ... 37
4.4.4 Condensate polishing plant ... 37
4.4.5 Steam side of low and high pressure pre-heaters 38
4.4.6 Feedwater tank .. 38
5 Treatment of water-steam cycles .. 40
5.1 Purification ... 40
5.1.1 Make-up water treatment ... 40
5.1.2 Condensate treatment ... 40
5.1.3 Removal of salts ... 41
5.1.3.1 Blowdown from drum and shell boilers 41
5.1.3.2 Blowdown from once-through boilers .. 41
5.1.3.3 Heaters ... 41
5.2 Deaeration and oxygen scavenging ... 42
5.2.1 Deaeration ... 42
5.2.2 Oxygen scavenging .. 42
5.3 Conditioning ... 43
5.3.1 Feed water conditioning ... 43
5.3.1.1 Feed water conditioning with alkalizing agents (AVT) 43
5.3.1.2 Feed water conditioning only with oxidizing agents 44
5.3.1.3 Feed water conditioning with alkalising and oxidising agents (OT) 45
5.3.2 Boiler water conditioning .. 46
5.3.2.1 Caustic or phosphate treatment (solid alkalising) 48
5.3.2.2 All volatile treatment .. 48
5.3.3 Organic conditioning agents 50
6 Chemical specification .. 52
6.1 Action level control system ... 52
6.2 Operation with demineralised feed water 55
6.2.1 Requirements on feed water for once-through boilers 55
6.2.2 Requirements on feed water for drum boilers 57
6.2.3 Requirements on boiler water for drum boilers 59
6.2.4 Requirements on steam for condensing turbines 65
6.3 Operation with non-demineralised feed water 66
6.3.1 General ... 66
6.3.2 Raw water/treated water parameters 66
6.3.3 Condensate percentage return 66
7 Explanation of chemical specifications 73
7.1 pH value, alkalinity .. 73
7.1.1 pH value .. 73
7.1.2 Alkalinity ... 74
7.2 Conductivity ... 75
7.3 Oxygen ... 76
7.4 Hardness ... 77
7.5 Phosphate ... 77
7.6 Silica ... 77
7.7 Iron and copper ... 78