Important notice – VGB copyright material

VGB-Standards, hereafter referred to as “work”, including all articles and images, are protected by international copyright.

The term “work” covers this PDF-file and its content. The copyright covers the work in its entirety and its constituent parts, such as: text, tables, diagrams, photographs and illustrations.

Any use and / or reproduction of this material without the prior written consent of VGB PowerTech e.V., is forbidden and will constitute an infringement of copyright law, liable to prosecution. Any unauthorised reproduction such as: photocopies, reprints, translations, its transfer: onto micro-film, entry into electronic data bases, to the Internet, or to a Web Site, saving onto CD-ROM or other digital media, any and all forms of digital storage and or reproduction will constitute an infringement of copyright.

Transfer of this document, printing, copying or reproducing this work or parts thereof in any way for or by third parties is not permitted.

Disclaimer

VGB-Standards are based on the collective experience and recommendations of PowerTech e.V. and its panel of experts and represent the best knowledge at the time of publication. No claim regarding its completeness is made as a matter of principle because of the numerous factors which must be taken into account and of course due to the dynamic process of continuous development.

VGB-Standards can be used to reach and agree upon detailed specifications between the purveyor and the purchaser.

Application of VGB Standards is carried out at the user's own risk. VGB PowerTech e.V and contributors to VGB Standards make no claim regarding its absolute accuracy and therefore accept no legal liability in the event of any claim relating to or resulting from its application.
Preface

By 1970 plants for the reduction of dust emissions had been state of the art worldwide, following this the first tests to reduce emissions of sulphur dioxide, \(\text{SO}_2 \), and nitrogen oxides, \(\text{NO}_x \), were carried out in Germany. By the late seventies, the first large-scale plants for desulphurisation of flue gases were built. In the eighties in Europe, legal requirements concerning \(\text{SO}_2 \) and \(\text{NO}_x \) reduction were implemented on a national basis. These technologies had been previously employed in other countries (especially Japan) when new plants were constructed as a consequence of the increasing smog problems in conurbations. The production of such plants experienced its first boom in 1983 in Germany, soon to be followed by Austria, when retrofitting of existing plants was demanded by law. In this period, oil prices were high and coal-fired power plants equipped with flue gas desulphurisation plants (FGD) could survive competition. However, prices began falling during the period of retrofitting the coal-fired power plants in Germany and Austria with FGD, from about 1987. The other EU member states consequently had economic reservations about retrofitting existing plants so that retrofitting was only demanded for new plants.

The European directives on ambient air quality of 1997 implemented further goals of the World Health Organisation (WHO). After 2001, retrofitting of existing plants has become an EU-wide obligation so that now a second FGD boom can be observed. Thanks to further state of the art developments, stricter limit values could be introduced for new plants. Today, international power plant projects in developing countries and emerging industrial countries that want to obtain promotional funds from the World Bank are examined with respect to whether planning complies with the demand for environmental protection measures according to “best available technique” (BAT). In the future, an international state of the art will have to be observed for every new plant. Due to the increasing interchange of products from different regions, environmental dumping will thus be avoided. These techniques comprise more than 30 years of process development reflected through practical experience. They are described in this instruction sheet. This instruction sheet was edited by the VGB “FGD Instruction Sheet” project group of the VGB “Flue Gas Cleaning Technology” working panel to support employees of VGB member companies in achieving an economic operation and maintenance measures of FGD. The instruction sheet is furthermore intended to record experience gathered over the past years. This is the only way to avoid that the “wheel”, i.e. FGD, is reinvented over and over again.

In questions of detail, the VGB “FGD Instruction Sheet” project group was supported by members of the VGB “Flue Gas Cleaning Technology” working panel.
The following colleagues were involved in the VGB “FGD Instruction Sheet” project group:

Dipl.-Ing. Bach, Reuter West power plant, Vattenfall Europe Berlin AG
Univ.-Prof. Dr.-Ing. Fahlenkamp, Technische Universität Dortmund
Dipl.-Ing. Knickenberg, Westfalen power plant, RWE Power AG
Dipl.-Ing. Maier, Evonik Energy Services GmbH, Essen
Dipl.-Ing. Tietze, E.ON Engineering GmbH, Gelsenkirchen-Buer
Dr.-Ing. Heiting, VGB PowerTech e.V.
Dr. rer. nat. Krüger, VGB PowerTech e.V.
Dr.-Ing. Pieper, VGB PowerTech e.V.
Dr.-Ing. Wecker, VGB PowerTech e.V.

Special thanks for cross-reading and improving the English translation to:

Mr. N. Booth, E.ON Engineering UK
Dr. C. Satterley, E.ON Engineering UK
Dr. A. Trunkfield, E.ON Engineering UK

We wish to thank them all for their cooperation and the discussion of plant-specific operating experience.

Essen, January 2011
VGB PowerTech e.V.
Table of contents

Preface.. 4
1 Scope of application... 8
2 Legal requirements.. 8
3 Introduction.. 13
4 FGD in Germany.. 15
 4.1 The history of lime wet scrubbing FGD in Germany... 16
 4.2 Further development of the lime(stone) wet scrubbing process in the early eighties 19
5 FGD arrangements.. 21
 5.1 Flue gas discharge/reheating ... 21
 5.2 Waste water discharge ... 23
6 Description of the limestone/gypsum wet scrubbing process 25
 6.1 Overall process description ... 25
 6.2 Separation mechanisms of action and separation efficiencies for flue gas components ... 34
 6.3 Material and energy balance using the example of a 600 MW_{el} equivalent FGD ... 44
 6.4 Single-loop/dual-loop spray tower absorber with and without additive 45
 6.5 Special absorber designs .. 57
7 Operating experience.. 66
 7.1 General operating experience with the first lime and limestone FGD systems 66
 7.2 Improvement measures on existing absorbers .. 69
 7.3 Experience with mist eliminators, induced-draught blowers (especially wet-running) and FGD gas/gas heaters ... 73
 7.4 Experience with absorber pumps, agitator and oxidation air systems 77
 7.5 Start-up and shutdown operation as well as measures in case of faults 79
 7.6 Maintenance requirements for FGD parts and components 84
 7.7 Affects on gypsum quality ... 86
 7.8 Problems caused by foam formation ... 88
 7.9 Problems caused by limestone blinding .. 93
8 Optimisation of FGD absorbers.. 98
 8.1 New provisions with respect to construction and process for absorbers 98
 8.2 Flow optimisation of FGD absorbers using CFD simulation 101
9 Design and experience with FGD auxiliary plants ..110
 9.1 FGD waste water treatment plant ..110
 9.2 Limestone preparation
 (slurry preparation tank, wet grinding, dry metering)115
 9.3 Gypsum dewatering (hydrocyclone, belt filter, centrifuges)121
 9.4 Transport, handling and storage of lime, limestone and gypsum128

10 Other FGD processes – description and operating experience.................138
 10.1 The sodium sulphite process (Wellman-Lord) ..138
 10.2 The ammonia process (developed by Walther & Cie.)146
 10.3 SAP FGD based on Ca(OH)$_2$...147
 10.4 Dry FGD, based on CaO/Ca(OH)$_2$..148
 10.5 Activated carbon FGD ..149
 10.6 The seawater FGD process ...152
 10.7 The WSA process (SNOX) ..153
 10.8 The DESONOX process ..153
 10.9 The electron beam process ..154