Guideline

Thermal Behaviour of Steam Turbines

VGB-R 105 M e

First edition 1977
Second, revised edition: 1990

Published by:
VGB PowerTech e.V.

Obtainable from:
VGB PowerTech Service GmbH
Verlag technisch-wissenschaftlicher Schriften
P.O. Box 10 39 32, D-45039 Essen
Phone: +49 201 8128-200
Fax: +49 201 8128-329
E-mail: mark@vgb.org

http://www.vgb.org
Preface to the First Edition

When starting and shutting down steam turbines or changing their power outputs, steam temperature variations are bound to occur that lead to temperature differences in and between the components. These temperature differences result in free expansions of the components relative to each other, deformations of the components themselves, and stresses in the components. If such expansions, deformations and stresses exceed certain limits set by design features or the materials used, both immediate damage — axial or radial rubbing — and long-time damage — inadmissible permanent deformation and crack formation — may occur.

Finding solutions to this complex of problems is gaining importance in the field of steam turbine construction and operation. While component dimensions and thus the effects of major temperature differences inevitably become more pronounced as unit outputs increase, it is desirable to avoid availability losses due to thermal overloads. In addition, more stringent system requirements are now placed on the loadability and controllability of large turbo-generator sets. Last but not least, the expected increase in unit output and the fact that conventional, medium-size and large power stations are being pushed toward the peak and medium-load range by other, more economic stations — e.g. nuclear — providing the base load, lend greater importance to the problems mentioned here.

Being aware of the relevance of the problems, scientists and engineers have made numerous theoretical studies, laboratory and field experiments in the past years which led to a better understanding of the processes involved and the possible damages that may occur. The results have revealed that major parts of the brochure "The Warm-Up Process in Steam Turbines", issued by VDEW in 1961, are now obsolete. Thus the VGB Working Group "Turbine Development" has set itself the goal to describe the current state of the art. In order to keep the work within reasonable limits, a restriction of the generally applicable information has proved to be necessary. However, the bibliography enables the problems indicated to be dealt with in more detail.

The Working Group for "Turbine Development" hopes that this updated publication will be of interest not only to turbine manufacturers but also — and above all — to power station design engineers and operators, and will serve the better understanding of the possibilities and limitations of the thermal behaviour of turbines. It should always be remembered that placing excessive requirements on the start-up and loading behaviour of turbines will reduce
the serve life of certain components. Mention is also made of the gentle mode of operation nowadays possible when suitable monitoring equipment or automatic systems are used. The brochure is not meant to replace operating instructions or start-up curves supplied by the turbine manufacturers, although the derivation of such curves is explained and “typical” start-up and load times are specified.

The brochure was drawn up in the VGB Working Group "Turbine Development" by a team headed by Mr. Haas, Kraftwerk Union AG, extensive contributions being made by Dr. Busse and Mr. Kramer, Brown Boveri & Cie., Mr. Andreae, Mr. Langbein, Dr. Loreck and Mr. Tümners, Kraftwerk Union AG, Mr. Cernoch, Dr. Martin, Mr. Mayer and Mr. Strätz, Maschinenfabrik Augsburg-Nürnberg AG.

Members of the Working Group "Turbine Development":
Huppmann, Aldrian, Prof. Bammert, Buchwald, Dangl, Prof. Dibelius, Haas, Haase, Dr. Hirschfelder, Höxtermann, Koch, Dr. Martin, Mitschel, Riedlinger, Schulte, Prof. Thomas and Wittich.

Essen, November 1977

Preface to the Second Edition

The second revision of this guideline was made by a team including Andreae, Dr. Busse, Höxtermann, Dr. Peter, Strätz and Wolf.

Members of the Working Group for "Turbine Development":
Dr. Linnemann, Aldrian, Dr. Bohnstedt, Prof. Dibelius, Prof. Haas, Hebel, Hedström, Höxtermann, Huppmann, Jensen, Keysselitz, Neft, Riedlinger, Schulte, Prof. Stetter, Trinkle and Wolf.

Essen, May 1990

VGB TECHNISCHE VEREINIGUNG
DER GROSSKRAFTWERKSBETREIBER E.V.
Contents

1 Introduction .. 9

2 Temperature Differences in Components 9
 2.1 Factors influencing the determination
 of temperature zones 11
 2.1.1 Heat transfer .. 12
 2.1.2 Influence of materials 13
 2.2 Temperature distribution in components 18
 2.2.1 Simplified solution of the differential equation 19
 2.2.1.1 Stationary temperature distribution 23
 2.2.1.2 Quasi-stationary temperature distribution 24
 2.2.1.3 Nonstationary temperature distribution 27
 2.2.2 Multidimensional heat flow 28

3 Expansion and Deformation of Components 30
 3.1 Determination of absolute and relative thermal expansion .. 31
 3.2 Influence of centrifugal force and internal pressure 33
 3.3 Effects of relative expansion on components design 34
 3.4 Bending of rotors 35
 3.5 Hogging of casings 36

4 Component Loading ... 37
 4.1 Component load types 37
 4.1.1 Unidimensional thermal stresses
 and restrained thermal expansion 37
 4.1.1.1 Stationary thermal stresses 40
 4.1.1.2 Quasi-stationary thermal stresses 41
 4.1.1.3 Nonstationary thermal stresses 42
 4.1.2 Multidimensional stress distribution 45
 4.2 Notching effects 46

Page 5
6.4 General rules for superheated and saturated steam turbine start-up and load change ... 88
6.4.1 Start-up and shutdown ... 88
6.4.1.1 Starting the gland steam system 88
6.4.1.2 Warming up the piping and valve bodies 90
6.4.1.3 Preheating and pressure build-up in the high-pressure turbine .. 92
6.4.1.4 Start-up, acceleration to nominal speed, no-load operation, load application 93
6.4.1.5 Load changes and shutdown processes 98
6.4.2 Function of warm-up pipes and drains 98
6.4.3 Saturated steam turbines ... 99

7 Supervision of the Thermal Behaviour of Turbines in Operation .. 99
7.1 Monitoring temperatures ... 100
7.1.1 Steam temperatures .. 100
7.1.1.1 Live and reheat steam temperatures 100
7.1.1.2 Exhaust steam temperature 101
7.1.1.3 Gland steam temperature 102
7.1.2 Component temperature ... 102
7.1.2.1 Valve body temperatures 103
7.1.2.2 Turbine casing temperatures 103
7.1.2.3 Rotor temperature ... 104
7.2 Monitoring of free expansion 104
7.2.1 Monitoring of stationary components 104
7.2.2 Monitoring of rotating components 105
7.2.3 Monitoring devices and where to locate them 105
7.3 Monitoring deformation .. 106
7.3.1 Monitoring of stationary components 106
7.3.2 Monitoring of rotating components 107
7.3.3 Monitoring equipment .. 108
7.3.4 Monitoring of the foundation 108
7.4 Monitoring of loads .. 109
7.4.1 Monitoring of stationary components 110
7.4.2 Monitoring of rotating components 110
7.4.3 Monitoring equipment .. 111
7.4.4 Service life monitoring ... 111