Vergleich von Richtlinien und Leitfäden für Fischaufstiegsanlagen und für die Durchgängigkeit von Restwasserstrecken

Bericht der Expertengruppe VGB-FA Wasserkraftanlagen
September 2013
Mitglieder der Expertengruppe

Wolfgang Biesgen (EDH Energiedienst Holding AG)
Rainer Bosse (RWE Power AG, ausgeschieden aus dem aktiven Dienst am 01.03.2012)
Marie-Noëlle Faye (EDF)
Hans-Joerg Gober (KELAG)
Gerhard Haimerl (BEW GmbH)
Sabine Käfer (VERBUND Hydro Power AG)
Bernhard Kalusa (EON, ausgeschieden aus dem aktiven Dienst Anfang 2012)
Devid Krull (RWE Innogy GmbH, ab 01.01.2012 RWE AG)
Gernot Ladinig (Voralberger Illwerke AG)
Anja Nitschke (EnBW Kraftwerke AG)
Josef Reingruber (Salzburg AG)
Sebastian Roger (RWE Innogy GmbH)
Jochen Ulrich (EDH Energiedienst Holding AG)

Friedrich Zemanek (EVN Naturkraft Erzeugungsgesellschaft mbH) - Koordination
Inhalt

1 Motivation und Aufgabenstellung der VGB-Expertengruppe Wasserkraft ... 5

1.1 Einleitung .. 5

1.2 Aufgabenstellung .. 5

2 Richtlinien und Leitfäden Fischaufstiegsanlagen 7

2.1 Deutschland .. 7

2.1.1 Deutschland allgemein .. 7

2.1.2 DWA-Merkblatt (DWA-M) 509 .. 9

2.1.3 Durchgängigkeit an Bundeswasserstraßen .. 13

2.1.4 Nordrhein-Westfalen .. 15

2.1.5 Bayern .. 16

2.1.6 Talsperren .. 17

2.2 Frankreich .. 17

2.2.1 Frankreich allgemein .. 17

2.2.2 Talsperren .. 19

2.3 Schweiz .. 19

2.3.1 Schweiz allgemein .. 19

2.3.2 Talsperren .. 21

2.4 Österreich ... 21

2.4.1 Österreich allgemein ... 21

2.4.2 Talsperren .. 23

2.5 Ländervergleich – Richtlinien und Leitfäden für Fischaufstiege ... 24

3 Monitoring von FAA – Vergleich der Vorgangsweise in den verschiedenen Ländern ... 25

3.1 Deutschland .. 25

3.2 Frankreich .. 26
3.3 Schweiz ...26
3.4 Österreich ..26
4 Beispiele funktionierender Fischaufstiegshilfen, die von den
einschlägigen Richtlinien und Leitfäden abweichen.............27
4.1 Gutachten im Auftrag von Österreichs Energieanalyse funktionierender
Fischaufstiegshilfen außerhalb der Grenz- und Richtwerte der AG FAH2011....27
4.2 Kraftwerk Gamp (Salzach) ..28
4.3 Kraftwerk Rott (Saalach) ...28
4.4 Kraftwerk Wyhlen (Hochrhein)29
4.5 Kraftwerk Rheinfelden ...31
4.6 Huchen- und Welsmonitoring von Verbund HYdro Power AG (VHP)31
5 Einschätzung der Expertenrunde34
6 Literatur Fischaufstiegsanlagen37
7 Richtlinien und Leitfäden zur Durchgängigkeit von
Restwasserstrecken (Mindestwasserführung)40
7.1 Deutschland ...40
7.1.1 LAWA-Empfehlungen ..40
7.1.2 Durchgängigkeitserlass NRW vom 26.01.200940
7.1.3 Bayern ...41
7.1.4 Baden-Württemberg – Wasserkrafterlass 200642
7.1.5 Hessen - Wasserkrafterlass43
7.2 Frankreich ..43
7.3 Schweiz ...44
7.4 Österreich ..45
7.5 Ländervergleich – Übersichtstabelle Mindestwasserführung46
8 Einschätzung der Expertenrunde – Mindestwasserführung47
9 Literatur Mindestwasserführung49
10 Wirtschaftliche Auswirkungen50
1 Motivation und Aufgabenstellung der VGB-Expertengruppe Wasserkraft

1.1 Einleitung

1.2 Aufgabenstellung

Der Arbeitsauftrag für die Expertengruppe bestand neben einem Erfahrungsaustausch in

a) der vergleichenden Analyse der wesentlichen Richtlinien und Leitfäden für den Fischaufstieg

b) dem Vergleich von Richtlinien und Leitfäden zum Thema Durchgängigkeit und Mindestwasserführung von Restwasserstrecken

Pkt b) wurde nachträglich auf Empfehlung der Expertengruppe vom FA Wasserkraft hinzugefügt.

Eine vergleichende schriftliche Darstellung der in Anwendung befindlichen Richtlinien und Leitfäden mit z. T. noch nicht wissenschaftlich belegten technischen Vorgaben soll den Wasserkraftbetreibern einen erhöhten Wissensstand und Argumentationsgrundlage bieten. Im Detail beinhaltete die Aufgabenstellung die...
- Sammlung, Präsentation und vergleichende Analyse der unterschiedlichen Richtlinien und Leitfäden für FAA und für die Durchgängigkeit von Ausleitungsstrecken
- Diskussion des Hintergrunds der Standards und der Erfahrungen damit
- Zusammenstellung laufender Anpassungen der aktuellen Richtlinien und Leitfäden
- Beurteilung und Bewertung (Kritik) der unterschiedlichen Richtlinien und Leitfäden
- Identifikation derjenigen Kriterien, die unverhältnismäßig sind sowohl bei Neubau als auch bei Nachrüstung von Wasserkraftwerken und die auf Vermutungen beruhen anstatt fundiertem Wissen.
- Darstellung von Praxisbeispielen und Untersuchungsergebnissen, durch die bewiesen werden kann, dass auch mit technischen Lösungen, die von den aktuell postulierten Auslegungskriterien abweichen, gute Ergebnisse bei der Fischwanderung erreicht werden können.
- Erstellung einer Dokumentation mittels eines Abschlussberichtes der Expertengruppe
2 Richtlinien und Leitfäden Fischaufstiegsanlagen

Vorbemerkung

2.1 Deutschland

2.1.1 Deutschland allgemein

Die gesetzlichen Regelungen in Deutschland zum Fischaufstieg werden durch die EG WRRL vorgegeben und durch die nationale Gesetzgebung sowie durch die Wirtschaftsziele und Maßnahmenprogramme umgesetzt. Mit Inkrafttreten des neuen Wasserhaushaltsgesetzes (WHG) am 01.03.2010 wurden die entsprechenden Anforderungen an die Gewässer unter anderem durch die §§ 27 – 31 sowie §§ 33 – 35 konkretisiert. Formalrechtlich greifen die §§ 33, 34 „sofort“ für neue und für vorhandene Stauanlagen, während einer bestehenden Wasserkraftnutzung in § 35 eine „angemessene Frist“ eingeräumt wird. Im praktischen Vollzug sind die entsprechenden behördlichen Anordnungen für Bestandsanlagen abhängig von der Art und der Befristung der wasserrechtlichen Gestattung im Kontext der Maßnahmenprogramme und Bewirtschaftungspläne für die regionalen Planungseinheiten. Vor allen im Rahmen von Modernisierungen oder Neukonzessionierungen ergeben behördenseitig nachträgliche Anordnungen, die dem Verhältnismäßigkeitsgebot genügen müssen.

Bei der hier betrachteten aufwärtsgereichteten Durchgängigkeit wird mit §34 WHG „Durchgängigkeit oberirdischer Gewässer“ üblicherweise auf das Querbauwerk als maßgebliches Hindernis abgestellt. Die zuständige Behörde hat erforderlichenfalls die Anordnungen zur Wiederherstellung der Durchgängigkeit zu treffen, um die Bewirtschaftungsziele nach Maßgabe der §§ 27 – 31 zu erreichen. Bei den Zuständig-
keiten für den Verwaltungsvollzug muss zwischen den Bundeswasserstraßen und den berichtspflichtigen Landesgewässern unterschieden werden.

Die Vergütungssätze sind sowohl für Neu- als auch für Bestandsanlagen nach deren (über das Jahr verstetigten) Bemessungsleistung gestaffelt (§ 23 Abs. 1 EEG), d. h.

- 127 €/MWh bis 500 kW
- 83 €/MWh bis 2 MW
- 63 €/MWh bis 5 MW
- 55 €/MWh bis 10 MW
- 53 €/MWh bis 20 MW
- 42 €/MWh bis 50 MW
- 34 €/MWh ab 50 MW

und gelten für 20 Jahre. Für die Vergütungssätze gilt eine jährliche Degression von 1%.

Gemäß § 23 Abs. 4 EEG ist Voraussetzung für Neuanlagen, dass diese den Anforderungen nach den §§ 33 bis 35 WHG entsprechen müssen (Bescheinigung durch zuständige Wasserbehörde oder Bestätigung eines Umweltgutachtens durch o. g. Behörde). Nach § 23 Abs. 5 EEG werden Neuanlagen an extra zur Wasserkraftnutzung neu errichteten Stau- tufen per se nicht gefördert, selbst wenn diese mit modernsten ökologischen Maßnahmen ausgestattet würden.

Bestandsanlagen können die Vergütungssätze nach EEG 2012 in Falle einer Modernisierung in Anspruch nehmen. Hierzu ist es erforderlich, dass gemäß
§ 23 Abs. 2 EEG die installierte Leistung oder das Leistungsvermögen (s. z. B. Liste der EEG-Clearing-Stelle, Klärung mit dem Verteilnetzbetreiber) der Anlage erhöht wurde (§ 6, Abs. 1 hier vernachlässigt). Für Anlagen, die bislang eine Bemessungsleistung von 5 MW überschritten haben und dementsprechend nach altem EEG nicht förderfähig waren, wird gemäß § 23 Abs. 3 EEG nur der Strom vergütet, der der Leistungserhöhung zuzurechnen ist.

§ 23 Abs. 4: die Wasserkraftnutzung zukünftig den Anforderungen nach den §§ 33 bis 35 WHG entspricht (s. o.)

Stellungnahme: Während im EEG 2009 hinsichtlich der gewässerökologischen Anforderungen nur eine „wesentliche Verbesserung“ erforderlich war, um in den Genuss der entsprechenden Vergütung zu gelangen, stellt das EEG 2012 auf die vollumfängliche Erfüllung der Anforderungen des WHG ab. Da dies auch die in „angemessener Frist“ umzusetzenden Maßnahmen zum Fischschutz sowie etwaige Fristverlängerung bei den unterliegenden Bewirtschaftungszielen umfasst, könnte sich bei einer zeitlich gestaffelten Umsetzung von Maßnahmen die Problematik ergeben, dass die Behörde erst nach Abschluss aller Maßnahmen (inkl. Fischschutz) eine Bescheinigung über die Erfüllung der WHG Anforderungen erstellt, obwohl die Möglichkeit einer zeitlich versetzten Umsetzung durchaus der Intention der WRRL sowie des WHG entspricht. Im schlimmsten Fall resultieren Fehlsteuerungen zur Umsetzung unerprobter Maßnahmen, um den Vergütungsanforderungen sofort zumindest formal entsprechen zu können.

Außerdem stellt sich die Frage, wie mit zukünftigen Erkenntnismöglichkeiten umzugehen ist, da ständig Nachbesserungen drohen. Unklarheiten bei der Vergütungsgewährung gefährden somit die Rechts-, Investitions- und Planungssicherheit.

2.1.2 DWA-Merkblatt (DWA-M) 509

Stellungnahme: Dem gesamten Werk fehlt als Einleitung eine Art Geltungs- bzw. Anwendungsbereich. Der Entwurf des Merkblattes vermittelt den einseitigen Eindruck, dass Maßnahmen zum Fischschutzflächendeckend entsprechend der vor-

Kern des Merkblattes bildet Kap. 3 „Allgemeine Anforderungen“, was die Bemessungsphilosophie und die Ableitung der jeweiligen Grenzwerte angeht. Hier finden sich weitgehende Übereinstimmungen zum Handbuch Querbauwerke.

Als Zielarten werden alle Arten der autochthonen Fischfauna postuliert.

Betriebszeit (Funktionstüchtigkeit) wird ab Q30 bis Q330 gefordert.

Stellungnahme: Ausnahmeregelungen für Sonderfälle bei temporären Fließgewässern sowie extremen bzw. andauernden Hoch- und Niedrigwassersituationen, Eisdbildung etc. wären angebracht.

Der Wanderkorridor ist ein idealisierter Raum, in dem sich die Fische zielgerichtet bewegen können.

Die Auffindbarkeit betrifft die großräumige Anordnung, die Leitströmung (inkl. Dotation = 1 – 1,5 % QAusbau = 2MQ für große Anlagen) sowie die lokale Positionierung und Ausgestaltung des Einstiegs.

Die **Passierbarkeit** hängt von den Orientierungsmechanismen, dem Verhalten, der Leistungsfähigkeit und Körpermaßen der Zielarten ab.

Hydraulische Grenzwerte: Die Bemessung erfolgt auf Basis der Fließgewässerzonen- und der Artengemeinschaft.

Geometrische Grenzwerte: Die Dimensionierung erfolgt anhand der Proportionen adulter Exemplare der größten zu erwartenden Fischart.

Neben vielen Tabellen enthält dieses Unterkapitel auch ein Ablaufschema zur Festlegung der Grenzwerte.

Stellungnahme: Dimensionierungen werden keineswegs konsequent aus empirischen Erkenntnissen abgeleitet, sondern basieren vielfach auf Plausibilitätsüberlegungen, welche z. T. sogar empirischen Befunden widersprechen (z. B. Forderung einer Wassertiefe, die der 2,5-fachen Körperhöhe der relevanten Art entspricht, obwohl derselbe Fisch im angrenzenden Gewässer streckenweise auch bei einer Wassertiefe wandert, die gerade seiner Körperhöhe entspricht).

Die letzten Abschnitte behandeln die Gestaltung der Sohle, die Lichtverhältnisse, die Einspeisung von Fremdwasser, die Gestaltung des Ausstieges und – sehr kurz gehalten – die Wartung sowie Störungen.

Kap. 4 „Rückbau“ ist nur 4 Spalten lang.

Stellungnahme: In einem Regelwerk zur Gestaltung und Bemessung von Fischaustiegsanlagen besteht keine Notwendigkeit, den Rückbau von Wanderhindernissen zu fordern. Der mögliche Rückbau funktionsloser Querbauwerke wäre daher eher im Rahmen einer Einleitung bzw. Einordnung des Merkblattes in den Bewirtschaftungskontext sinnvoller.

Kap. 5 „Kreuzungsbauwerke“ ist eher unwichtig.

Kap. 6 „Fischpassierbare Raugerinne“ umfasst (Teil)Rampen, Sohlgleiten, Stützschwelen, Umgehungsgerinne mit je flächenhafter Rauheit, Störsteinen und/oder Beckenstrukturen.

Das **Bemessungskonzept** mit Teilsicherheitsbeiwerten fordert Funktionalitätsnachweise für Betriebsabflüsse (Q30 bis Q330) und Stabilitätsnachweise für Hochwasserabflüsse (HQ). Die Gestaltung der Querprofile und der Sohle muss einen auffindbaren und passierbaren Wanderkorridor (heff, vmax) garantieren (geometrische und hydraulische Bemessungswerte).

Bauweisen: gesetzt, geschüttet, aufgelöst, Nachbettsicherung, Filterstabilität, Steinklassen/-größen. Filterstabile Steinschüttung und massive Bauweise sind für belastete Querschnitte und zur Hochwassersicherung anerkannt. Ingenieurbiologische Bauweise und naturnahe Böschungs- und Sohlsicherung nur für Mittelwasser.

Kap. 7 „Fischaustiegsanlagen“ ist das zentrale Kapitel hinsichtlich technischer Bauweisen direkt am oder im Querbauwerk.

Beckenartige FAA nutzen das Kaskadenprinzip: Energieumwandlung und h je Becken, vmax = (2g h)1/2 an Durchlässen. Konventionelle Beckenpässe weisen Kronenausschnitte und/oder sohlennahe Schlupfloch auf. Die hydraulische Bemes-

Raugerinne-Beckenpässe sind eine Kombination aus einer Rampe (Kap. 6) und einer beckenartigen FAA. Gerinneartige FAA sind der Denil-Pass, der Borstenfischpass und die Aalleiter. Zu den Sonderkonstruktionen gehören Fischschleuse (z. B. Borland, Pavlov, Deelder), Fischaufzug, „Trap & Truck“-Systeme.

Kap. 8 „Qualitätssicherung“, Kap. 9 „Biologische Untersuchungen“ und Kap. 10 „Kosten“ sind vergleichsweise kurz gehalten und geben wenig Hinweise auf die Bewertung sowie die Aufwendungen für Betrieb, Wartung und Instandhaltung. Das Monitoring und die energiewirtschaftlichen Auswirkungen werden durch die Expertengruppe in späteren Abschnitten dieses Berichtes (Kap. 3 bzw. 10) erläutert.

Stellungnahme: Obwohl der Begriff „Qualitätssicherung“ im Untertitel des Gelbdruckes verwendet wird, kommt dieser Aspekt im Merkblatt deutlich zu kurz.

Der fachliche Schwerpunkt des Merkblattes wird vornehmlich auf die Ableitung fisch-ökologischer Anforderungen und deren Transformation in technische Spezifikationen (z. B. geometrische und hydraulische Grenzwerte) gelegt. Wenn jedoch der Anspruch erhoben wird, im Rahmen eines technischen Merkblattes (ggf. allgemeinverbindliche) Vorgaben für den Bau von Fischaufstieg anlagen im Sinne eines Standes der Technik zu formulieren, darf die Sichtweise nicht einseitig auf die Ableitung biologischer Anforderungen verkürzt werden, sondern muss alle hierfür relevanten technischen, wirtschaftlichen und rechtlichen Randbedingungen sowie die nutzungsbezogenen Erfordernisse in systematischer und angemessener Form einbeziehen. Ansonsten wird das Entscheidungsumfeld für Betreiber, Behörden und sonstige Interessensgruppen nur unvollständig bzw. verzerrt abgebildet.

Die Berücksichtigung von Kosten-Nutzen-Erwägungen sowie weiterer standortbezogener Randbedingungen ist in der Systematik des Merkblattes lediglich bei der Begründung von Abweichungen von den biologisch determinierten Anforderungen in Form „zwingender Gründe“ vorgesehen (S. 258 f.). Die Marginalisierung wesentlicher Determinanten der Maßnahmenbemessung auf restriktive Ausnahmefälle wird der Formulierung eines Standes der Technik nicht gerecht (s. o.). Kosten-Nutzen-Erwägungen dürfen nicht erst bei der ausnahmsweisen Abweichung vom definierten Stand der Technik einfließen, sondern müssen bereits integraler Bestandteil bei dessen Formulierung sein. Gerade auch im Wasserrecht sind geschützte Rechtsgüter, konkurrierende Belange des Allgemeinwohls und die betroffenen Interessen ver-
schiedener Gewässerbenutzer untereinander abzuwägen und zu koordinieren (Verhältnismäßigkeitssgrundsatz, effektiver Einsatz knapper Mittel etc.).

2.1.3 Durchgängigkeit an Bundeswasserstraßen

BAW und BfG wurden beauftragt, die biologisch-technischen Grundlagen zu erarbeiten, und durch begleitende F&E-Aktivitäten bestehende Kenntnislücken zu schließen.

Im August 2010 wurde der BfG-Bericht 1697 „Fischökologische Einstufung der Dringlichkeit von Maßnahmen für den Fischaufstieg“ zur Verbesserung der stromaufwärts gerichteten Durchgängigkeit an den Staustufen der BWaStr fertiggestellt.

2011 wurden durch die WSDen regionale Umsetzungskonzepte erstellt unter Berücksichtigung der WRRL-Bewirtschaftungsplanungen der Bundesländer sowie bestehender Vereinbarungen mit Landesstellen und/or Wasserkraftanlagenbetreibern und die Maßnahmenpriorisierung bundesweit zusammengeführt. Die Gesamtreihung der Maßnahmen gliedert sich in die beiden Hauptblöcke „Umsetzungsaktivitäten“ und „Prüfaktivitäten“. Innerhalb des Hauptblocks „Umsetzungsaktivitäten“ werden angelehnt an die Bewirtschaftungszyklen der WRRL (bis 2015, bis 2021, bis
2027) bundesweit ca. 250 Stauanlagen in 3 Umsetzungsphasen mit Fischwechselanlagen ausgestattet.

Stellungnahme: Dies führt zu erheblich größeren Betriebsabflüssen in der FAA, welche nicht wie der zusätzlich dotierte Anteil der Leitströmung energisch genutzt werden kann. Auffallend sind die Grauzone und die Unsicherheiten bzgl. der Anforderungen an großen Gewässern, für die das DWA-M 509 nach Ansicht der Fachbe-

2.1.4 Nordrhein-Westfalen

„Die Anordnung, Dimensionierung und Funktionsfähigkeit der Fischaufstiegsanlage einschließlich des Sohlsubstrats haben den allgemein anerkannten Regeln der Technik zu entsprechen.“ Hier wird noch auf DVWK 232 und das Handbuch Querbauwerke verwiesen. In der Praxis wird seit Erscheinen der Gelbdruck des DWA-M 509 herangezogen. „Damit diese Werte auch eingehalten werden und auf eine spätere Funktionskontrolle verzichtet werden kann, ist bei der Planung eine Qualitätssicherung durchzuführen. Eine Funktionskontrolle durch den Betreiber ist dann grundsätzlich nicht erforderlich.“

„Die Durchgängigkeit muss nicht für Fischarten gewährleistet sein, denen das Gewässer keinen Lebensraum bietet oder nach der Bewirtschaftungsentscheidung auch nicht in Zukunft bieten soll. Daher ist für Verwaltungsverfahren nach den Nummern 1 und 2 die Bewirtschaftungsentscheidung erforderlich, welchen Fischarten das Gewässer Lebensraum bieten soll (Zielarten). […] Ausgangspunkt für die Festlegung der Zielarten ist die heutige potenziell natürliche Fischfauna (= gewässertypspezifische Fischfauna).“

Stellungnahme: s. o. 2.1.2 Kritik zu DWA-M 509 bzgl. Zielarten.

(es fehlt beispielsweise eine entsprechende Kopfzeile/Bezeichnung) ist auch nicht sicher.

2.1.5 Bayern

Das Praxishandbuch behandelt nur FAA und nicht Fischabstiegsanlagen, die technisch noch nicht gelöst sind, und da auch nur manche Fischarten für ihr nachhaltiges Überleben auf die Durchgängigkeit flussabwärts angewiesen sind (z. B. Lachs, Aal). Im Anhang I wird bei den Kriterien zur Durchgängigkeit explizit unterschieden zwischen dem Main-/Elbe-Einzugsgebiet und dem Donaueinzugsgebiet: Im bayerischen Donaueinzugsgebiet wird eine völlig ungestörte Abwärts wanderung nicht als zwingende Notwendigkeit angesehen.

Die für FAA größenbestimmenden Fischarten werden direkt für die bayerischen Gewässer angegeben. Die Bemessungsparameter werden aus DWA-M 509 und dem Österreichischen Leitfaden (Entwurf) übernommen.

Zur Dotation (Gesamtdotation = Betriebsabfluss + Leitströmung) gibt das Praxishandbuch Beispiele und Größenordnungen von 1 - 1,5 % MQ an. Dabei wird jedoch auf die spezifische Situation der Gesamtanlage (einschließlich energiewirtschaftlicher Belange) und die jeweils erforderliche Einzelfalllösung verwiesen.

Die Hinweise zur Gestaltung der verschiedenen Typen von Fischaufstiegen bieten eine gute Zusammenfassung des Standes der Technik, die inhaltlich nicht von anderen aktuellen Richtlinien und Leitfäden (z. B. DWA) abweicht. Im Kapitel Grundlagentermittlung und Analyse werden Hinweise und Handlungsanleitungen für die Planung von FAA gegeben bis hin zu Fehlvermeidung und Optimierung bestehender Anlagen.

Im Anhang sind Beispielrechnungen sowie eine umfangreiche Beispielsammlung bestehender Anlagen mit Bewertungen und ggf. Verbesserungsvorschlägen angegeben.

Vom Landesfischereiverband Bayern wurden zusätzlich zwei Broschüren zum Thema herausgebracht

„Ökologische Verbesserungen an Wasserkraftanlagen gem. EEG“
„Leitfaden für Umweltgutachter und Wasserrechtsbehörden“

Darin werden Mindestanforderungen an ökologische Verbesserungsmaßnahmen gefordert und „Alibilösungen“ zur Erlangung höherer EEG Vergütungen kritisiert. Unabhängig von der ökologischen Notwendigkeit wird aber auch gefordert, dass min-
destens 50% der zusätzlichen Förderungen lt. EEG in ökologische Maßnahmen fließen sollen.

2.1.6 Talsperren

In Deutschland ist die Limitierung für die Nachrüstungsnotwendigkeit von Talsperren mit Fischaufstiegshilfen unklar. Derzeit läuft auch noch die Diskussion über das gute ökologische Potenzial bei erheblich veränderten Gewässern (HMWB – Heavily Modified Water Bodies). Das Thema ist für große Talsperren eng verbunden mit der Bewirtschaftungsentscheidung und den Zielarten.

Im Einzelfall wird die Nachrüstung von Talsperren mit einer FAA gefordert (z. B. Fluss Murg, Höhe ca. 15 m, Durchgängigkeit für den Lachs).

2.2 Frankreich

2.2.1 Frankreich allgemein

Die gesetzlichen Regelungen in Frankreich zum Fischaufstieg werden durch die EG WRRL vorgegeben und durch die nationale Gesetzgebung (Loi sur l’Eau et les Milieux Aquatiques, 2006) sowie durch die verschiedene Maßnahmenprogramme (die für jedes Einzugsgebiet von einem lokalen Komitee definiert wurden) umgesetzt. Durch die zahlreichenden Erfahrungen von Fischwanderungshilfen in Frankreich konnten einige Kriterien für den Fischauf- und –abstieg definiert werden. Mehrere Leitfaden wurden seit den 1980er Jahren vom CSP / ONEMA (French National Agency for Water and Aquatic Environments) veröffentlicht, um diese Kriterien zu vereinheitlichen:

Fischaufstiege aus den 1980er Jahren werden generell noch heute gut akzeptiert, z.B.:

Zeitplan für die Anpassung von Wasserkraftanlagen an die Vorgaben der EG WRRL

Das Ziel der ökologischen Durchgängigkeit für alle Fischarten ist bis 2027 sicherzustellen. Eine schrittweise Umsetzung ist vorgesehen, um dieses Ziel zu erreichen.

Dafür wurde 2013 für jedes Einzugsgebiet eine Verordnung veröffentlicht, die zwei Listen von prioritären Gewässernetzen definiert:

- Die 1. Liste enthält die Gewässer, die in einem sehr guten ökologischen Zustand sind, oder die einen kompletten Schutz der wandernnden Fischarten benötigen. An diesen Gewässern wird kein neuer Wehrbau erlaubt, wenn er die ökologische Durchgängigkeit (d.h. für Fische und Sediment) nicht ermöglicht. Die bestehenden Wasserkraftanlagen müssen spätestens an der Erneuerung der Konzession umgerüstet werden. Diese Liste betrifft keine Talsperren (sehr guter Zustand ist bei Talsperren nicht möglich für „Heavily Modified Water Bodies“, und wandernnde Fischarten sind hier meist kein Thema).

- Die 2. Liste enthält die Gewässer, die Anpassungsbedarf hinsichtlich Sedimenttransport und Fischdurchgängigkeit haben. In diesem Fall müssen alle Anlagen spätestens 5 Jahre nach der Publikation dieser 2. Liste (d.h. 2018 für die erste Phase) nach- bzw. umgerüstet werden.

Vorgangsweise bei neuen Wasserkraftanlagen

In einem Gewässer, das von einer Liste betroffen ist, darf eine neue Wasserkraftanlage nur gebaut werden, wenn das Projekt die ökologische Durchgängigkeit (d.h. für Fische und Sediment) ermöglicht. Jedes Projekt wird deshalb von einer staatlichen Behörde (Umweltministerium – ONEMA) beurteilt.

In anderen Gewässern gibt es zurzeit keine anderen Kriterien.

Vorgangsweise bei bestehenden Wasserkraftanlagen

Wenn die Wasserkraftanlage von der 1. Liste betroffen ist, muss die Wasserkraftanlage spätestens für die Erneuerung der Konzession umgerüstet werden, um dem heutigen Stand der Technik zu entsprechen.

Wenn das Wasserkraftwerk in der 2. Liste zitiert ist, muss die Anlage spätestens 5 Jahre nach der Publikation nach- bzw. umgerüstet werden.

Wenn das Wasserkraftwerk von keiner Liste betroffen ist, ist die Durchgängigkeit zurzeit kein Thema.

Finanzierung der Maßnahmen

Gewässerökologische Verbesserungsmaßnahmen (u. a. die Errichtung von FAA) werden in Frankreich in jedem Einzugsgebiet im Rahmen des Maßnahmenprogramms der Wasseragentur gefördert (eine Wasseragentur pro Einzugsgebiet).
nach der betroffenen Wasseragentur können diese Förderungen bis 50% der Studienkosten und 80% der Baukosten bedecken.

2.2.2 Talsperren

2.3 Schweiz

2.3.1 Schweiz allgemein

In der Schweiz, in der die EG WRRL keine Gültigkeit hat, gibt es keinen verbindlichen Leitfaden oder eine Richtlinie, allerdings erfolgt häufig eine Anlehnung an den Entwurf des DWA-Merkblattes 509.

Es existieren aktuelle Veröffentlichungen

- Wiederherstellung der Fischwanderung - Strategische Planung“ (Ein Modul der Vollzugshilfe Renaturierung der Gewässer), herausgegeben vom Bundesamt für Umwelt BAFU, Bern 2012.

Diese Veröffentlichungen verfolgen die Ziele

- Vereinheitlichung der Kriterien für den Fischauf- und -abstieg in der Schweiz
- Hilfe für die Umsetzung des revidierten Gewässerschutzgesetzes vom 01.01.2011

Konsequenzen aus der neuen Gewässerschutzgesetzgebung

Die neue Gewässerschutzgesetzgebung verfolgt das Ziel die Wasserkraftwerke ökologisch zu sanieren. Diese Sanierung umfasst folgende Bereiche:

- Schwall-Sunk (§ 39a GSchG)
- Geschiebe (§43a GschG)
- Freie Fischwanderung an bestehenden Wasserkraftwerken (§ 10 BGF)

Finanzierung der Maßnahmen

Um dieses Ziel zu erreichen, wurde mit § 15abis im Schweizer Energiegesetz eine Entschädigungsregelung für die Wasserkraftbetreiber eingeführt, mit der die vollständigen Kosten für die Sanierung gedeckt werden. Hierfür wird von der Netzentstehung ein Zuschlag 0,1 Rp/kWh auf die Übertragungskosten des Hochspannungsnetzes erhoben und für die Sanierungsmaßnahmen zur Verfügung gestellt. Somit stehen bis 2030 pro Jahr ca. 50 Mio. CHF für die Sanierungsmaßnahmen zur Verfügung. Die Finanzierungsregelung gilt nur für bestehende Anlagen (laufende Konzession oder Konzessionserneuerung ohne Ausbau). Bei Neuanlagen wird keine Entschädigung gewährt (Vgl. nachstehende Tabelle)

Entschädigung des Konzessionärs: Massnahmen

<table>
<thead>
<tr>
<th>Massnahmen-typ</th>
<th>Laufende Konzession</th>
<th>Neukonzessionierung ohne Ausbau</th>
<th>Neukonzessionierung mit Ausbau</th>
<th>Neubau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baulicth</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja²</td>
<td>Nein</td>
</tr>
<tr>
<td>Betrieblich</td>
<td>Ja</td>
<td>Ja²</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Abflussmenge</td>
<td>Ja</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Fischdurchgängigkeit</td>
<td>Ja²</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
</tbody>
</table>

1 nur für Besetzung der bereits vor dem Ausbau bestehenden Betriebsfähigkeit
2 nur wenn Restwassermenge (Art. 60 GSchG) für den Betrieb der FAH nicht genügt, bis zum Ablauf der Konzession

Vorgehen zur Umsetzung

Die Kantone planen die Sanierungsmaßnahmen für Schwall/Sunk, Geschiebe und Fischdurchgängigkeit bis Ende 2014 (strategische Planung). Die Planung wird beim Bund eingereicht. Entsprechend der vorgenommenen Priorisierung erhalten die Kraftwerksbetreiber eine Sanierungsverfügung (Verfügung für die Planung).

Weitere Schritte:
1. Kraftwerksbetreiber plant und stellt Gesuch zur Entschädigung beim Kanton Kanton und Bundesamt für Umwelt prüfen Gesuch
2. Kraftwerk setzt Maßnahme um
2. Kraftwerk stellt Rechnung
Kanton und Bundesamt für Umwelt prüfen Maßnahmen und Rechnung
Swissgrid macht Zahlung.
2.3.2 Talsperren
Bei Neubau Art. 29ff GschG muss eine Restwassermenge abgegeben werden. Bei bestehenden Anlagen muss Sanierung nach § 80 erfolgen.

Bei Talsperren wird im Einzelfall beurteilt, ob eine Fischdurchgängigkeit erforderlich ist. Die Praxis zeigt, dass in der Regel keine Fischdurchgängigkeit erforderlich ist. Die gesetzlichen Regelungen betreffend Fischwanderung gelten aber generell für alle Wasserentnahmen. Somit wäre auch eine Finanzierung nach dem Energiegesetz (s.o.) grundsätzlich möglich.

2.4 Österreich

2.4.1 Österreich allgemein

Der österreichische Grundlagenbericht hatte z.B. wesentlich strengere Kriterien als der Entwurf des DWA-M 509 bei den Grenzwerten:
- Wassertiefen
- Schlitzweiten, Mindestbreiten
- Leistungsdichten

Beispielsweise war die Funktionalität der FAA laut Grundlagenbericht jahresdurchgängig sicherzustellen, im Gegensatz dazu werden im DWA-Merkblatt etwas eingeschränkte Betriebszeiten (zwischen Q30 und Q330) vorgeschrieben. Außerdem war im Grundlagenbericht gefordert, dass die Funktion durch ein zusammenfassendes Gutachten über Auffindbarkeit, Passierbarkeit und Betriebssicherheit der FAA zu bewerten ist. Im DWA-Merkblatt wird ein Monitoring nur bei Abweichungen vom Stand der Technik gefordert.

Es wurde auch festgestellt, dass der Fischabstieg für den Erhalt der Population wichtig ist. Bei Kraftwerksneubauten sollen Abstiegsanlagen nach dem Stand des Wissens eingeplant werden.

Im Dezember 2012 erfolgte die Veröffentlichung des „Leitfaden zum Bau von Fischaufstiegshilfen“ durch das Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft BMLFUW. Im Folgenden wird daher nur mehr auf den Leitfaden eingegangen.

Aufgaben und Zielsetzungen des Leitfadens
- Unterstützung bei der Planung von Fischaufstiegshilfen (FAHs)
Er enthält Kriterien für die Planung und den Bau von FAHs, die gewährleisten, dass die FAHs funktionsfähig sind und damit die flussaufwärts gerichtete Fischwanderung erhalten bzw. wieder hergestellt wird.

Er enthält wesentliche Planungs- und Dimensionierungskriterien ohne technische Anleitungen zum Bau zu ersetzen.

Individuelle Lösungen vergleichbarer Qualität sind nicht ausgeschlossen.

Generelle Anforderungen an funktionsfähige FAHs

- Gewährleistung der Aufwärtswanderung für Sicherstellung des guten ökologischen Zustands / Potentials
- Passage für einen wesentlichen Teil der wanderwilligen Individuen und Altersstadien (ab 1+-Jahrgängen) der Leitfischarten und typischen Begleitarten
- Hauptfunktionskriterien: Auffindbarkeit und Passierbarkeit

Funktionszeit im Jahresverlauf

- Funktionsfähigkeit im Normalfall an ca. 300 Tagen im Jahr innerhalb Q30 und Q330
- Innerhalb der Abflussgrenzwerte sind eine gute Passierbarkeit der FAH sowie eine gute Auffindbarkeit des unterwasserseitigen Einstiegs zu gewährleisten
- Von der starren Festlegung auf die Q30-Q330 – Regel kann/sollte in fachlich begründeten Fällen abgewichen werden

Grenzwerte

- Kriterien wie Mindestwassertiefe, Mindestgröße, Schlitzweite und Leistungsdichte weichen im österreichischen Leitfaden teilweise erheblich von den DWA-Werten ab und sind in der Regel strenger

Größenbestimmende Fischart

- Bemessungswerte orientieren sich an Leitfischarten und typischen Begleitarten gem. Fischleitbildern (Fischlänge, -höhe, -breite)
- Größte Art ist relevant für Mindestdimensionierung der FAH
- Aufgliederung nach Gewässertypen/Fischregion
- Es gibt Anmerkungen, wann Abweichungen sinnvoll/angebracht sind
 - Übergangsbereich von Fischregionen
 - Innerhalb der Fischregion an den Grenzen der Abflussklassen
 - Einwanderung von Großfischarten in kleinen Zubringern
 - Geschützte FFH-Arten

Sicherstellung der Auffindbarkeit

- Optimale Lage des FAH Einstieges in Bezug zum Querbauwerk bzw. zur großräumigen Leitströmung
- Ausreichende Leitstromdotation – Leitkorridor (Gesamtdotationsmenge 1-5 % des konkurrierenden Abflusses, nur bei optimaler Positionierung der FAH-Mündung kann von 1% des MQ des Gewässers ausgegangen werden)
- Ausreichende Fließgeschwindigkeit des austretenden Leitstroms
- Sohlanchluss

Betriebssicherheit
- Regelmäßige Kontrolle (Dotierwassermenge und maßgebliche hydraulische und geometrische Parameter) und Wartung
- Störfallvorsorge (bei Hochwasser und Staulegung)

Funktionkontrolle
Diese ist erforderlich
- entweder auf abiotische Parameter beschränkt oder
- durch biologische Untersuchungen ergänzt (bei komplexen Anlagen in größeren Gewässern empfohlen)

Bis 2013 genehmigte FAH können im Rahmen des Umweltförderungsgesetzes mit bis zu 15% der Investitionskosten der FAH gefördert werden. Voraussetzung für die Bundesförderung ist eine Co-Förderung durch das jeweilige Bundesland. Die Fördersätze sind unterschiedlich. Eine Förderung ab 2014 ist aktuell für Wettbewerbs teilnehmer nicht vorgesehen.

2.4.2 Talsperren
Das gute ökologische Potential ist im Fischlebensraum auch ohne Durchgängigkeit gegeben, wenn es sich um ein Querbauwerk > 20 m Höhe oder eine Sperrenstaffel handelt, und wenn die Herstellung der Durchgängigkeit signifikante negative Auswirkungen haben würde und diese Maßnahme nicht zur Definition des ökologischen Potentials herangezogen werden darf (BMLFUW, 2009).
2.5 Ländervergleich – Richtlinien und Leitfäden für Fischaufstiege

Der Vergleich der verschiedenen Richtlinien und Leitfäden in Bezug auf die Auslegungskriterien für die Ausführung einer FAA als Schlitzpass in tabellarischer Form findet sich im Anhang 1 ("Vergleich der verschiedenen Richtlinien und Leitfäden in Bezug auf die Auslegungskriterien für einen Schlitzpass") In der Tabelle werden die Dimensionierungs- und Bemessungswerte für den Schlitzpass gemäß Handbuch Querbauwerke NRW, guide technique ONEMA Frankreich, Gelbdruk DWA-M 509, Österreichischer Leitfaden, Praxishandbuch Bayern sowie Anforderungen für Neckar und Mosel dargestellt.

Im Zuge der Bemessung mittels hydraulischer Grenzwerte sticht vor allem die im österreichischen Leitfaden geforderte Energiedissipation heraus. Während die deutschen Leitfäden für die Äschenregion nahezu identische Werte fordern (180 – 200 W/m³), werden im österreichischen Leitfaden 130 W/m³ gefordert. Für die Dimensionierung (hier z. B. Wassertiefen) zieht man in Österreich im Vergleich zu den deutschen Bundesländern wiederum den größten Wert für Äschen heran (60 cm). In Deutschland postuliert das BMVBS gemeinsam mit seinen nachgeordneten Behörden der Wasser- und Schifffahrtsverwaltung (WSV) sowie den Bundesanstalten für Gewässerkunde und Wasserbau (BfG und BAW) wesentlich höhere geometrische Grenzwerte. Mit der Begründung, dass wesentlich größere Fischmengen gleichzeitig aufsteigen müssen, und dass mit einem erheblichen Aufkommen vom Schwarmfischen zu rechnen sei, werden an Bundeswasserstraßen Wassertiefen von 1,0 – 1,2 m und Schlitzbreiten von 0,45 – 0,5 m gefordert. Im Folgenden wird für einen konventionellen Schlitzpass differenziert, welche Auslegungskriterien /Bemessungsparameter welche Kosten implizieren:

Die Festlegung der hydraulischen Grenzwerte erfolgt auf Basis der Fließgewässerzonierung und der Artengemeinschaft. Eine geringere einzu haltende Energiedissipation bewirkt größere Becken (s.o.). Eine Reduzierung der maximal erlaubten Fließgeschwindigkeiten kann lokal zu größeren Schlitten führen oder durch den geringeren Höhenunterschied je Becken die Gesamtanzahl der Becken und damit die gesamte Baumlänge mit allen Kosten (s. o.) erheblich vergrößern.

Die Festlegung größerer Dotationswassermengen führt ohne energetische Nutzung zu Erzeugungseinbußen und zu größeren Beckenvolumina am Einstieg in die FAA. Alle Nebenanlagen (Rechen etc.) und die Dotationsleitung selber werden zudem teurer.
3 Monitoring von FAA – Vergleich der Vorgangsweise in den verschiedenen Ländern

Vorbemerkung

Es gibt in den einzelnen Ländern kein einheitliches Vorgehen für die Durchführung von Monitoring und Funktionskontrollen.

3.1 Deutschland

Im DWA-M 509 ergibt sich für das Monitoring, „dass eine wesentliche Intention des überarbeiteten Merkblattes darin [besteht], die Anforderungskriterien für Planung und Bauausführung im Sinne der Qualitätssicherung soweit zu präzisieren, dass bei Einhaltung dieser Vorgaben die Funktionsfähigkeit gewährleistet ist und sich nach Möglichkeit nachträgliche biologische Untersuchungen (z. B. Aufstiegskontrollen) erübrigen“ (Einleitung S. 22).

In Kap. 8 „Qualitätssicherung“ heißt es: „Bei Einhaltung der Vorgaben dieses Merkblattes erfolgt eine Einstufung in die Bewertungsgruppe A/B [Anm. d. Verf.: sehr gut/gut, d. h. kein Handlungsbedarf], bei Abweichungen in die Bewertungsgruppe C/D/E [Anm. d. Verf.: mäßig/unbefriedigend/schlecht, d. h. in der Regel Anpassungen].“ (S. 256)

Bei den „biologischen Untersuchungen“ in Kap. 9 steht, dass diese „insbesondere dann erforderlich [sind], wenn eine Bewertung der Auffindbarkeit anhand der technischen Qualitätskriterien bei komplexen hydraulischen, hydrologischen oder topografischen Bedingungen nur eingeschränkt möglich ist […] oder bei unvermeidbaren Abweichungen vom Stand der Technik eine differenzierte Bewertung der betroffenen Einzelkriterien und deren Auswirkungen […] erforderlich wird."

Im Durchgängigkeitserlass NRW steht, dass die Werte gemäß der Richtlinien und Leitfäden (Hier wird noch auf DVWK 232 und das Handbuch Querbauwerke verwiesen. In der Praxis wird seit Erscheinen der Gelbdruk des DWA-M 509 herangezogen.) eingehalten werden müssen und bei der Planung eine Qualitätssicherung durchzuführen ist. „Eine Funktionskontrolle durch den Betreiber ist dann grundsätzlich nicht erforderlich.“ In NRW werden jedoch bei größeren Anlagen in der Regel Monitoring-Einrichtungen vorgesehen (und Kontrollen durchgeführt) oder sind nachrüstbar. Außerdem wird an der Pilotanlage Unkemühle an der Sieg ein umfangreiches Monitoring inklusive aller betrieblichen und technischen Parameter durchgeführt.
Vom Bund werden aufgrund der größeren Unsicherheiten in der Bewertung der Durchgängigkeit für BWaStr nach der hydraulisch-technischen Funktionskontrolle im Gegensatz zum DWA-M 509 biologische Untersuchungen zur Bewertung der fisch-ökologischen Wirksamkeit aller neuen FAA gefordert. (In dem Konzept der WSV werden ja auch Prüfaktivitäten benannt.) „Daher sind zunächst an allen neuen Fischaufstiegsanlagen und von diesen insbesondere Pilotanlagen, die durch repräsentative Randbedingungen auch für andere Standorte charakteristisch sind, auf ihre fisch-ökologische Wirksamkeit hin zu untersuchen.“

3.2 Frankreich
An Großkraftwerken werden teilweise Fischzählstationen (Video-Zählung) als Dauer einrichtung installiert, z.B. am Wasserkraftwerk Gambsheim.

3.3 Schweiz
In der Schweiz werden die jeweils eigenen Kriterien projektbezogen mit den Kantone n abgestimmt, bei Grenzgewässern mit dem Bundesamt für Umwelt.
Am Hochrhein (und seit 2005/2006 auch an der Aare) werden seit 1985/86 alle 10 Jahre koordinierte Fischzählungen an allen Kraftwerken durchgeführt. Im Zusammenhang mit diesen Zählungen wurden biologische Kriterien zur Bewertung der Fischaufstiege festgelegt. Es zeigt sich, dass viele FAA (biologisch) gut funktionieren, obwohl sie die von der DWA festgelegten technischen Kriterien nicht in allen Punkten erfüllen.
Die Ergebnisse im langjährigen Vergleich zeigen, dass insbesondere die Aufstiegs frequenz abhängig von der Populationsentwicklung ist. Eine Beurteilung nach Aufstiegsfrequenz ist daher wenig sinnvoll. Vielmehr müsste nach % der aufstiegswilligen Fische beurteilt werden.
Mittlerweile ist an Hochrhein und Aare der Einbau von Fischzählbecken Stand der Technik. Videoaufnahmen haben sich für ein aussagekräftiges Monitoring aufgrund von Problemen bei der Erkennung, Sauberhaltung und Trübung als ungeeignet erwiesen.
Im Auftrag von BEW führte Prof. RUTSCHMANN numerische Simulationen hinsicht lich der Lockströmung bei weiter flussab liegendem Einstieg durch. Verschiedene Buhnenlösungen für Mündungsgestaltung wurden untersucht.

3.4 Österreich
4 Beispiele funktionierender Fischaufstiegshilfen, die von den einschlägigen Richtlinien und Leitfäden abweichen

4.1 Gutachten im Auftrag von Österreichs Energieanalyse funktionierender Fischaufstiegshilfen außerhalb der Grenz- und Richtwerte der AG FAH 2011

Im Rahmen der Diskussion des Grundlagenberichts für einen österreichischen Leitfaden zum Bau von Fischaufstiegshilfen wurde im Auftrag von Österreichs Energie durch Herrn Univ. Prof. DI. Dr. Helmut Mader eine Analyse und kritische Auseinandersetzung der Funktion von Fischaufstiegstufen, die nicht den Grenz- und Richtwerten des Grundlagenberichts mit den darin enthaltenen Vorgaben und Forderungen entsprechen, durchgeführt (sh. Literaturverzeichnis).

Folgende Monitoringergebnisse wurden ausgewertet:

- FAH am Hochrhein (Stand 2005/2006)
 - KW Schaffhausen
 - KW Eglisau
 - KW Recklingen
 - KW Albruck-Dogern
 - KW Laufenburg
 - KW Säckingen
 - KW Ryburg-Schwörstadt
 - KW Rheinfelden
 - KW Augst
 - KW Wyhlen
 - KW Birsefelden
- FAH am KW Neuwelt/Birs (CH)
- FAH am KW Reichenau (CH)
- FAH am KW Murau – St. Egidi (A)
- FAH am Talfer Dam / Meuse
- FAH am KW Rott / Saalach (A)
- FAH am KW Gamp / Salzach (A)
- FAH am Katzensteinerwehr / Gaflenzbach (A)
- FAH am KW Breitenbach / Traun (A)
- FAH am KW Hart (A)
- FAH am KW Waly Slaskie /oder (PL)
- FAH am Marchfeldkanal (A)
- FAH am KW Kemmelbach / Ybbs (A)

4.2 Kraftwerk Gamp (Salzach)

Die FAH ist eine Kombination aus einem vertical-slot im unteren Abschnitt und einem in Richtung Oberwasser anschließenden gewässertypspezifischem Umgehungsgerinne. Im Unterwasser mündet die FAH direkt auf Höhe der Turbinenauslässe stromungsparallel, wobei die Sohlanbindung über eine kleine Rampe erfolgt. Der Ausstieg im Oberwasser liegt etwa 70 m oberhalb der Wehranlage.

MQ 145,2 m³/s
QA 175,0 m³/s (Ausbauwassermenge)
Nettofallhöhe 6,22 m (bei Ausbauwassermenge)
Fischregion Hyporhithral groß
Leitfischarten Äsche, Bachforelle, Huchen, Koppe

Parameter, welche vom Leitfaden abweichen:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ausgeführt</th>
<th>Leitfaden</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dotation</td>
<td>400 l/s</td>
<td>550 l/s</td>
<td>vertical-slot Strecke</td>
</tr>
<tr>
<td>Gesamtdotation</td>
<td>1.000 l/s</td>
<td>1-5 % QZufuss</td>
<td>Grund- + Lockstrom-dotation</td>
</tr>
<tr>
<td>Beckenlänge</td>
<td>2,55 m</td>
<td>3,10 m</td>
<td></td>
</tr>
<tr>
<td>Beckenbreite</td>
<td>1,80 m</td>
<td>2,10 m</td>
<td></td>
</tr>
<tr>
<td>Schlitzbreite</td>
<td>25 cm</td>
<td>35 cm</td>
<td>vertical-slot Strecke</td>
</tr>
<tr>
<td>min. Wasservol.</td>
<td>3,61 m³</td>
<td>6,70 m³</td>
<td>Becken vertical-slot</td>
</tr>
<tr>
<td>min. Aufenthaltszeit</td>
<td>9,03 s</td>
<td>12,18 s</td>
<td>Becken vertical-slot</td>
</tr>
<tr>
<td>max. Gefälle</td>
<td>0,96 %</td>
<td>0,5 - 0,7 %</td>
<td>Umgehungsgerinne</td>
</tr>
</tbody>
</table>

Im Monitoringbericht vom Juli 2009 wurde abschließend festgehalten, dass davon auszugehen ist, dass eine uneingeschränkte Passierbarkeit für die gewässertypspezifischen Arten und somit eine Funktionsfähigkeit gegeben ist.

4.3 Kraftwerk Rott (Saalach)

Die FAH ist eine Kombination aus zwei vertical-slot Abschnitt und einem dazwischen liegenden naturnahen Umgehungsgerinne. Im Unterwasser mündet die FAH etwa 45 m stromab der Turbinenauslässe tangential ein. Die Sohlanbindung erfolgt über eine kleine Rampe. Der Ausstieg im Oberwasser liegt etwa 85 m oberhalb der Wehranlage.
MQ 44,1 m³/s
QA 58,5 m³/s (Ausbauwassermenge)
Nettofallhöhe 10,4 m (bei Ausbauwassermenge)
Fischregion Epipotamal mittel (Barbenregion)
Leitfischarten Aitel, Barbe, Nase, Schneider

Parameter, welche vom Leitfaden abweichen:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ausgeführt</th>
<th>Leitfaden</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtdotation</td>
<td>900 l/s</td>
<td>1-5 % Q_{zufluss}</td>
<td>Grund- + Lockstromdotation</td>
</tr>
<tr>
<td>Überfallshöhe</td>
<td>15 cm</td>
<td>13 cm</td>
<td>∆h je Becken</td>
</tr>
<tr>
<td>v max. im Schlitz</td>
<td>1,72 m/s</td>
<td>1,6 m/s</td>
<td>Beckenübergänge</td>
</tr>
<tr>
<td>v mittel im Schlitz</td>
<td>1,37 m/s</td>
<td>1,32 m/s</td>
<td>Beckenübergänge</td>
</tr>
<tr>
<td>Energiedichte</td>
<td>124 W/m³</td>
<td>100 W/m³</td>
<td>Becken vertical-slot</td>
</tr>
<tr>
<td>Dotation</td>
<td>300 l/s</td>
<td>330 l/s</td>
<td>Umgehungsgerinne</td>
</tr>
</tbody>
</table>

Im Monitoringbericht vom September 2008 wurde abschließend festgehalten, dass davon ausgegangen wird, dass eine uneingeschränkte Passierbarkeit für die gewässertyp-spezifischen Arten und somit eine Funktionsfähigkeit gegeben ist.

4.4 Kraftwerk Wyhlen (Hochrhein)

Im Jahr 2008 wurde der Beckenfischpass in Wyhlen zu einem Raugerinne-Beckenfischpass umgebaut und optimiert. Aufgrund der räumlichen Verhältnisse konnten nicht alle Forderungen hinsichtlich der technischen Kriterien erfüllt werden.

Tabelle 1: Bewertung des neuen Raugerinne-Beckenpasses anhand technischer Kriterien gemäß SCHWEVERS & ADAM (2006), wobei vorausgesetzt wird, dass die Anlage den Anforderungen an ein Gewässer bzw. an die Lebensgemeinschaft der Barbenregion genügt

<table>
<thead>
<tr>
<th>Kriterien</th>
<th>Daten</th>
<th>Bewertung</th>
<th>Klasse</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhendifferenz Becken [m]</td>
<td>0,20</td>
<td>D</td>
<td>A</td>
<td>sehr gut</td>
</tr>
<tr>
<td>Schlupfloch-Breite [m]</td>
<td>0,30</td>
<td>D</td>
<td>E</td>
<td>mässig</td>
</tr>
<tr>
<td>Länge Becken [m]</td>
<td>2,50</td>
<td>C</td>
<td>B</td>
<td>gut</td>
</tr>
<tr>
<td>Breite Becken [m]</td>
<td>3,10</td>
<td>A</td>
<td>A</td>
<td>sehr gut</td>
</tr>
<tr>
<td>Wassertiefe Becken [m]</td>
<td>0,77</td>
<td>A</td>
<td>A</td>
<td>sehr gut</td>
</tr>
<tr>
<td>max. Fließgeschwindigkeit Schlitz [m/s]</td>
<td>2,00</td>
<td>D</td>
<td>D</td>
<td>schlecht</td>
</tr>
<tr>
<td>Leistungsdichte [W/m³]</td>
<td>148,00</td>
<td>D</td>
<td>D</td>
<td>schlecht</td>
</tr>
</tbody>
</table>

Insbesondere die Höhendifferenz zwischen den Becken und die Schlupfloch-Breite entsprechen nicht den Anforderungen. Mittlerweile konnte die an einer Stelle auftretende Höhendifferenz von 0,20 m auf 0,17 m reduziert werden, so dass nun durchgehend ca. 0,17 m Höhendifferenz vorliegen. Dennoch zeigten sich sehr gute Aufstiegsresultate. Der Fischpass wurde Stand 2009 als der beste Fischpass am Hochrhein beurteilt. Er erhielt nach den Bewertungskriterien von Guthruf (BAFU
2008) insbesondere für Kleinfische und Anzahl aufsteigende Arten gut bis sehr gute Bewertungen.

Tabelle 2: Gesamtbewertung sanierte FAH im Vergleich der koordinierten Zählung 2005/06. Die einzelnen Teilkriterien wurden bei der Gesamtbewertung unterschiedlich gewichtet (siehe unterste Zeile).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Schaffhausen W</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
</tr>
<tr>
<td>Eggisau MP</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>Reckingen W</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1.8</td>
</tr>
<tr>
<td>Reckingen MH</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>1.5</td>
</tr>
<tr>
<td>Albruck-Dogern W</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>Albruck-Dogern MH</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0.9</td>
</tr>
<tr>
<td>Laufenburg W</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>Laufenburg MH</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1.7</td>
</tr>
<tr>
<td>Säckingen MH</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2.2</td>
</tr>
<tr>
<td>Ryburg-Schwörstadt MP</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1.9</td>
</tr>
<tr>
<td>Rheinfelden W (RGBP)</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td></td>
<td>4.0</td>
</tr>
<tr>
<td>Augst MH (VSP)</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>3.4</td>
</tr>
<tr>
<td>Wyhilen MH 2005/06</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2.4</td>
</tr>
<tr>
<td>Wyhilen MH 2009/09</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>4.2</td>
</tr>
<tr>
<td>Wyhilen Fischlift W</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>1.9</td>
</tr>
<tr>
<td>Birsefelden W</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>3.4</td>
</tr>
<tr>
<td>Gewichtung bei Bewertung</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Diese Ergebnisse zeigen, dass auch bei Nichterfüllung einiger in den Richtlinien und Leitfäden enthaltenen technischen Kriterien gute oder sehr gute Ergebnisse beim biologischen Monitoring erzielt werden können.
4.5 Kraftwerk Rheinfelden

Die bis April 2013 laufende Fischzählung am Umgehungsgewässer des KW Rheinfelden zeigt mit einem Aufstieg von rd. 35.000 Fischen aus 33 Arten in den Monaten April bis Oktober ein für den Hochrhein herausragendes Ergebnis, obwohl der Einstieg entgegen der Forderungen der Richtlinien und Leitfäden rund 900 m flussab des Wehres liegt (s. Bild, Einstieg beim Pfeil). Der Vertical-Slot-Fischpass, der in optimaler Lage beim Wanderhindernis liegt (Bild Einstieg rechts am Bildrand beim Kreis) wurde hingegen nur von 5.000 Fischen aus 22 Arten frequentiert.

4.6 Huchen- und Welsmonitoring von Verbund HYdro Power AG (VHP)

Die VHP hat Univ.Prof.Dipl.Ing.Dr. Helmut Mader mit der Erstellung eines Gutachtens über die Funktionskontrolle des enature® Fishpasses für die Leitfischart Huchen beauftragt.

aufstiegshilfen mit kantigem Sohlsubstrat bzw. kantigen Störelementen eine hohe Verletzungsgefahr. Bei der Errichtung von Fischaufstiegshilfen, bei denen mit dem Aufstieg von Welsen zu rechnen ist, sollte aus Sicht der Erkenntnisse des vorliegen-
den Monitorings auf die Verwendung von kantigem Sohlmaterial verzichtet werden, da dieses eine potentielle Verletzungsquelle darstellt.

Aufgrund der gewonnenen Erkenntnisse plant die VHP, nach Errichtung der Fisch-
 wanderhilfe beim KW Rosegg, das Wels-Monitoring, nicht nur für den geforderten 90 cm Wels sondern auch für den 120 cm Wels, zu wiederholen, um so die Forderung nach „überdimensionierten“ Becken (Beckengröße, Schlitzweite, Wassertiefe und Dotationswassermenge betreffend) durch einen wissenschaftlich begleiteten in situ Versuch hintanzuhalten.
5 Einschätzung der Expertenrunde

Fachliche Diskussionen und/oder wissenschaftliche Untersuchungen sind zu nachstehenden Themen wünschenswert, um angemessene und gleichzeitig effektive Maßnahmen realisieren zu können:

Leitbilder, Zielarten, Fischereibewirtschaftung

Die heute gültigen Fischleitbilder wurden häufig abseits der Realität festgelegt: Die Auslegung einer FAA muss laut diesen Vorgaben für solche Fische erfolgen, die aufgrund der aktuellen und erreichbaren Habitatstruktur auch zukünftig nicht oder nicht dauerhaft vorkommen werden.

Ausgehend von der autochthonen Fischfauna müssen gemäß der Bewirtschaftungsintention die relevanten Zielarten festgelegt werden, die in einem bestimmten Gewässerabschnitt vorhanden sein können/sollen. Verbunden mit dieser Thematik wäre daher nicht nur eine Registrierung aufgestiegener Fische, sondern auch ein Habitat-Monitoring sinnvoll, das heißt eine Quantifizierung, ob für die anspruchsvolle Arten die notwendigen Habitate (z. B. in Nebengewässern) vorhanden bzw. nutzbar sind und die ausgewiesenen Habitate auch erreicht und angenommen werden.

Auffindbarkeit, Fischverhalten, Leitströmung, Dotation, Positionierung/Gestaltung Einstieg

In den Leitfäden wird ein Prozentsatz der konkurrierenden Strömung als erforderliche Leitströmung angegeben. Eine sinnvoll angeordnete, wahrnehmbare Strömung (Menge und Richtung) ist oft zielführender als eine pauschal vorgegebene Prozentzahl des Gesamtabflusses. Orientierungswerte, die auf Nachweis erhöht oder reduziert werden können, wären eine bessere Alternative. Hinsichtlich der Frage, was eigentlich als konkurrierende Strömung zu betrachten ist, setzt sich derzeit die Ansicht durch, dass damit die Abströmung der unmittelbar angrenzenden Turbine gemeint ist.

In den Richtlinien und Leitfäden wird eine parallel zum Turbinenauslauf angeordnete Leitströmung als ideal angesehen. Die Möglichkeit, die Fische im 90°-Winkel über die Saugschlauchdecke, auf der bei Reusenzählungen viele Fische registriert wurden, in den Fischpass zu leiten, besteht auch und kann ebenfalls eine sinnvolle Einstiegsvariante sein (Beispiel KW Ryburg-Schwörstadt).

Es fehlen vertiefte Untersuchungen, inwieweit eine Fehlleitung von Fischen bei Ausleitungsanlagen (Sackgasseneffekt) durch gezielte Maßnahmen – z. B. durch eine
Kombination von sensorischen und mechanischen Verhaltensbarrieren – reduziert werden kann.

Die Wanderwege und Aufenthaltszonen der Fische vor einem Kraftwerk sind aufzuzeigen – hierzu besteht dringender Untersuchungsbedarf.

Passierbarkeit, Dimensionierung, Konstruktive Gestaltung

Es besteht einhellige Meinung in der Expertengruppe, dass bei der Bemessung von FAA ein größerer Spielraum zu fordern ist, der es ermöglicht, auf die spezifischen lokalen Gegebenheiten Rücksicht zu nehmen sowie Alternativen mit eigener Kompetenz nachzuweisen und gleichwertige Maßnahmen zu realisieren (Einzelfallbetrachtung).

Eine fundierte fachliche Hinterlegung der Bemessungsparameter erscheint in vielen Fällen erforderlich (v.a. Wassertiefen, Schlitzweiten für bestimmte Arten). Die Differenzen in den Richtlinien und Leitfäden sind nicht nachvollziehbar und nicht begründet, wie zum Beispiel die unterschiedlichen Energiedichten (s. Vergleichstabelle Anhang 1).

Die geometrischen Bemessungsgrößen für die FAA beziehen sich auf die Fischgrößen einzelner Individuen. Der „Bemessungsfisch“ sollte sich an einem aktuell repräsentativen Querschnitt adulter Exemplare orientieren und nicht an größtmöglichen Individuen bzw. historischen Extremwerten.

Vor allen Dingen an großen Fließgewässern wie den Bundeswasserstraßen Mosel und Neckar werden vermehrt weitergehende Anforderungen als z.B. im DWA-M 509 gestellt und mit dem Vorkommen von Schwarmfischen begründet. Querbauwerke stellen unbestritten Nadelöhre für die Durchgängigkeit dar. Trotzdem sollten sich die Bundesbehörden vor dem Hintergrund der Kosten (vgl. Kap. 2.5) ernsthaft mit der Frage beschäftigen, ob FAA auf einen synchronen Aufstieg vieler Individuen bis hin zu Schwärmen ausgelegt werden müssen.

Funktionsnachweise, Monitoring

Sonstiges: Betriebszeiten, Talsperren, Gesamtanlage

Die Bewertungen sehen nur eine Betrachtung der einzelnen FAA vor. Bezüglich der Durchgängigkeit muss aber die gesamte Staustufe inklusive der anderen Wanderkorridore betrachtet werden. Anlagen können sich gegenseitig in ihren Eigenschaften ergänzen und beeinflussen (Schiffschleuse, Wehre etc.).

6 Literatur Fischaufstiegsanlagen

7 Richtlinien und Leitfäden zur Durchgängigkeit von Restwasserstrecken (Mindestwasserführung)

7.1 Deutschland

7.1.1 LAWA-Empfehlungen

Die Empfehlungen der Bund/Länder-Arbeitsgemeinschaft Wasser (LAWA) werden z.T. in Sachsen und Rheinlandpfalz angewendet.

Für den Mindestabfluss gilt 1,0 MNQ als Orientierungswert

Abhängig von Fließgewässerzone für potenziell natürliche Fischfauna

- Jahreszeitliche Dynamisierung (ökohydrologischen Ansatz)
- Entwicklungsbio- logische Dynamisierung (Biotop-Abfluss-Ansatz)
- Biotop-Abfluss-Ansatz abhängig von biozönotischer Region:
 - \(v > 0,3 \text{ m/s}, h = 0,2 – 0,4 \text{ m} \) (repräsentative Flachstelle = pessimale Stelle)
 - \(h = 0,3 – 0,6 \text{ m} \) (Talweg der Ausleitungsstrecke)
- Insgesamt schwer verständlich (z. B. Mindestabfluss für große Anlagen?)

<table>
<thead>
<tr>
<th>Gewässerbiozönotische Typisierung</th>
<th>Mindesttiefe zum Erhalt der Durchgängigkeit (T_{\text{min}} [\text{m}])</th>
<th>Mittlere Wassertiefe zum Erhalt des Lebensraumes in Talweg (T_{\text{LR}} [\text{m}])</th>
<th>Mindestanforderung an die mittlere Querschnittsgeschwindigkeit ([\text{m/s}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forellenregion (Epi- und Metarhithral)</td>
<td>(\geq 0,2)</td>
<td>(\geq 0,3)</td>
<td>(\geq 0,3)</td>
</tr>
<tr>
<td>Aschenregion (Hyporhithral)</td>
<td>(\geq 0,2)</td>
<td>(\geq 0,5)</td>
<td>(\geq 0,3)</td>
</tr>
<tr>
<td>Barbenregion (Epipotamal)</td>
<td>(\geq 0,3)</td>
<td>(\geq 0,6)</td>
<td>(\geq 0,3)</td>
</tr>
<tr>
<td>Brachsenregion (Metapotamal)</td>
<td>(\geq 0,4)</td>
<td>(\geq 0,6)</td>
<td>(\geq 0,3)</td>
</tr>
</tbody>
</table>

Stellungnahme: Die Minimalkriterien für Restwasserstrecken gem. LAWA (2001) sind nicht nachvollziehbar. Insbesondere die geforderten Wassertiefen sind zu hoch und führen vielfach zu überhöhten Restwasserabflüssen (>1, 0 MNQ!!)).

7.1.2 Durchgängigkeitserlass NRW vom 26.01.2009

Maßnahmen zum Ausgleich der Beeinträchtigung der Gewässer durch Wasserkraft (Nr. 4)
- Mindestwasserführung in Ausleitungsstrecken
 - Orientierungswerte 1/3 – 1/2 MNQ (Einzugsgebiet > 50 km²)
 - absolutes Minimum 1/6 MNQ (Makrozoobenthos, falls Betriebsgraben fisch-passierbar)
 - Ausleitungsstrecke = Wanderkorridor für Fische => verschärfte Anforderungen und fischbiologische Untersuchung im Einzelfall
 - Forellenregion: h > 0,1 m bzw. v > 0,3 m/s
 - Äschenregion: h > 0,15 m bzw. v > 0,3 m/s
 - Barbenregion: h > 0,3 m bzw. v > 0,3 m/s
 - Brassenregion: h > 0,4 m bzw. v > 0,3 m/s
 - Keine Sackgassenwirkung des Untergrabens
 - Einzelfallbetrachtung im Flachland (I < 0,2 %)

7.1.3 Bayern

Der Restwasserleitfaden sieht eine Beurteilung der erforderlichen Restwassermenge hinsichtlich mehrerer Kriterien vor, die sich auf Naturversuche stützen sollen. Trotz Bewertung der energiewirtschaftlichen Auswirkungen wird i. d. R. letztlich ein Gewässerökologisch begründeter Mindestwasserabfluss oder ein Sockelwert von 4% der Ausbauwassermenge vorgeschlagen.

Aktuell bereitet das Bayer. Umweltministerium im Zuge der Energiewende eine Überarbeitung des Restwasserleitfadens vor. Die aktuelle Aussage des Umweltministeriums ist:

§ 33 WHG enthält eine eigenständige, rechtlich abschließende Regelung für die Bestimmung der Mindestwasserführung. Der erforderliche Mindestwasserabfluss richtet sich stets nach den Gegebenheiten vor Ort, insbesondere nach der hydrologischen Situation und den ökologischen Erfordernissen, und ist für den Einzelfall festzulegen.

Der bayerische Restwasserleitfaden von 1999 ist nicht mehr uneingeschränkt anwendbar, da die Bewirtschaftungsziele nach der Wasserrahmenrichtlinie darin noch nicht berücksichtigt sind. Eine pauschale Übernahme der sich aus der Anwendung des Restwasserleitfadens ergebenden Mindestwasserabflüsse ist deshalb nicht möglich.

Bis zur Veröffentlichung eines überarbeiteten Restwasserleitfadens kann der Restwasserleitfaden von 1999 zur Beurteilung der ausreichenden Restwassermenge mit nachfolgender Einschränkung herangezogen werden:
Bei dem nach Restwasserleitfaden ermittelten Restwasservorschlag QRE ist zu prüfen, ob damit die Ziele nach Wasserrahmenrichtlinie zu erreichen sind (besondere Beachtung muss die Qualitätskomponente Fischfauna finden). Ist dies nicht der Fall, ist die zusätzlich benötigte Wassermenge zu ermitteln. Orientierung hierfür können die LAWA-Empfehlungen zur Ermittlung von Mindestwasserabflüssen in Ausleitungsstrecken von Wasserkraftanlagen aus dem Jahr 2001 geben, insbesondere die dortigen Angaben zu ausreichenden Wassertiefen und Fließgeschwindigkeiten, um die Durchgängigkeit in der Restwasserstrecke auch für die potentiell natürliche Fischpopulation zu gewährleisten.

Sofern der für die Ziele der Wasserrahmenrichtlinie erforderliche Mindestwasserabfluss im Einzelfall nicht oder nicht im notwendigen Umfang durch Nebenbestimmungen ermöglicht werden kann, ist eine Ausnahme gemäß § 31 Abs. 2 WHG zu prüfen.“

7.1.4 Baden-Württemberg – Wasserkrafterlass 2006

Zudem wird auf den „Leitfaden zur Bestimmung der Mindestwasserabflüsse“ (herausgegeben von der Landesanstalt für Umweltschutz) verwiesen, in dem das Verfahren zur Ermittlung der Mindestabflüsse beschrieben wird.

Danach gilt als Orientierungswert für alle Flüsse 1/3 des mittleren jährlichen Niedrigwasserabflusses (MNQ). Der Leitfaden gibt zudem vor, dass der Mindestwasserabfluss nicht weniger als 1/6 MNQ und maximal 1/2 MNQ betragen sollte. Nur wenn besondere fachliche Gründe vorliegen kann der Wert 1/2 MNQ überschritten werden.

Die ökologischen Anforderungen in den kritischen Bereichen werden in Abflussgrößen umgesetzt. Unter Beachtung, dass nicht in jeder Strecke und zu jeder Zeit alle Teilfunktionen erfüllt sein müssen, wird der Mindestabfluss ermittelt durch:

- Überschlägige hydraulische Abschätzung bei Begehung,
- Dotationsversuche (Naturversuche) oder
- Hydraulische Umsetzung über Simulationsrechnung

Es zeichnet sich eine Tendenz ab, dass der Orientierungswert von 1/3 MNQ nicht mehr als ausreichend anerkannt wird. Es besteht die Befürchtung dass die Forde rungen in Zukunft deutlich über 2/3 MNQ liegen werden.
7.1.5 Hessen - Wasserkraftverordnung
Für den Mindestabfluss gelten folgende Orientierungswerte
- 0,9 MNQ (Einzugsgebiet < 20 km²)
- 0,5 MNQ (Einzugsgebiet 20 -50 km²)
- 1/3 MNQ (Einzugsgebiet > 50 km²) in der Ausleitungsstrecke, der durch Zu- und Abschläge an die spezifischen örtlichen Bedingungen zur Erhaltung der ökologischen Funktionsfähigkeit anzupassen ist.

Regelung über den in einem Fließgewässer zu belassenden Mindestabfluss bei der Entnahme und Wiedereinleitung von Wasser vom 12.12.2007,
StAnz. S. 2775 Bezug: Erlass vom 9.12.2002 (StAnz. 2003 (Hess.) S. 158)
Gutachten Umweltbundesamt: Fokus Hessen auf MZB statt Fischfauna

Die ökologischen Kriterien in Hessen sind Orientierungswerte, die mit Zu- und Abschlägen versehen werden können.

7.2 Frankreich

Ab Januar 2014 gelten für den Mindestabfluss folgende Orientierungswerte:
- Allgemein : 0,1 MQ - d.e. ca. 0,3-0,5 MNQ ;
- Sonderfälle : 0,05 MQ
 - wenn MQ > 80m³/s
 - für Kraftwerke, die zur Stromherstellung während Stromverbrauchspitzen beitragen.
- Ausnahmen : <0,05 MQ (bis zu keinem Mindestabfluss)
 - atypische Gewässer (z.B. Karst)
 - extreme Niedrigwasserperioden.

Wenn durch eine ökologische Studie bewiesen wurde, dass der Mindestabfluss nicht ausreichend ist, können die Behörden in Einzelfällen zwar noch strengere Mindestabflusswerte aufzwingen.

Es gibt ebenso die Möglichkeit, ein ökologisches Mindestabflussregime zu definieren. In diesem Fall wird das Restwasser zu jeder Jahresperiode angepasst. Dieser Mindestabfluss darf aber nie unter die Hälfte der definierten Mindestrestwassermenge liegen. Der Jahresdurchschnitt muss den Orientierungswert erreichen.

Evaluierung des Einflusses des ökologischen Mindestabflusses
Für einige Kraftwerke (wenn es von den Behörden - ONEMA verlangt wurde), wird eine Evaluierung dieser Erhöhung der Mindestrestwassermenge bei den Wasserkraftbetreibern durchgeführt.

Folgende Parametern werden dann beurteilt:

- **Biologie:**
 - Fischwanderung durch Funktionsfähigkeit der Fischaufstiegshilfen, Fischabstiegshilfen, Durchgängigkeit von Ausleitungsstrecken;
 - Fischmonitoring durch Fischzählung innerhalb und außerhalb der Ausleitungsstrecke, während 3 bis 6 Jahren (Lebenszyklus);
 - Lebensräumen: Unterschlupfe in Ausleitungsstrecken, Zählung und Beschreibung von Laichgebieten in Ausleitungsstrecken (im Vergleich mit einer Ausgangslage);
 - Invertebraten: 2 Stationen, 2 bis 3 Messungen/Jahr während 3 Jahren;
 - Wasserpflanzen: Entwicklung von Makrophyten (im Vergleich mit einer Ausgangslage), Diatomee Index.

- **Hydromorphologie:**
 - Abflussregime: Messung während mindestens 5 Jahren von einer Messstation stromabwärts vom Kraftwerk, Charakterisierung von Hochwassern (Einfluss auf Sedimentschüttung und auf junge Fische), Prüfung der Funktionsfähigkeit von der Mindestwasserführung.
 - Morphologie

- Wasserqualität: T°, O_2, Durchsichtigkeit - stromaufwärts vom KW und in den Ausleitungsstrecken während 5 Jahren

7.3 Schweiz

Gemäß Art. 31 ff Gewässerschutzgesetz gilt:

Bei Wasserentnahmen aus Fließgewässern mit ständiger Wasserführung muss die Restwassermenge mindestens betragen:

<table>
<thead>
<tr>
<th>Q 347</th>
<th>Restwasser</th>
<th>Bei höherem Q 347 von...</th>
<th>Erhöhung Mindestwasser um ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 l/s</td>
<td>50 l/s</td>
<td>10 l/s</td>
<td>8 l/s</td>
</tr>
<tr>
<td>160 l/s</td>
<td>130 l/s</td>
<td>10 l/s</td>
<td>4,4 l/s</td>
</tr>
<tr>
<td>500 l/s</td>
<td>280 l/s</td>
<td>100 l/s</td>
<td>31 l/s</td>
</tr>
<tr>
<td>2.500 l/s</td>
<td>900 l/s</td>
<td>100 l/s</td>
<td>21,3 l/s</td>
</tr>
<tr>
<td>10.000 l/s</td>
<td>2.500 l/s</td>
<td>1000 l/s</td>
<td>150 l/s</td>
</tr>
<tr>
<td>60.000 l/s</td>
<td>10.000 l/s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Eine Erhöhung der Mindestwassermenge bei bestehenden Anlagen kann von der Behörde angeordnet werden, falls ökologisch notwendig.
Als minimale Wassertiefe im Wanderkorridor müssen 20 cm eingehalten werden. Wenn Seeforellen vorhanden sind muss der Wanderkorridor durchgehend 40 cm tief sein.

Eine Forderung hinsichtlich Fließgeschwindigkeit gibt es nicht.

7.4 Österreich
Qualitätsziele für Fließgewässer lt. QZVO Ökologie

– Biologische Qualitätskomponente Fischfauna
 Zur Beurteilung der biologischen Qualitätskomponente Fischfauna ist der Fischindex heranzuziehen. Der Fischindex besteht aus 5 Modulen
 1. Nachweisqualität der Leitfischart,
 2. proportionale Längenfrequenz der Leitfischart,
 3. relative Reproduktion der typspezifischen Arten,
 4. Fehlen von typspezifischen Arten und
 5. Über- bzw. Unterschreitung der ursprünglichen Biomasse
 und wird als Abweichung des Zustandes jedes Moduls vom jeweiligen Referenzwert errechnet.

– Hydromorphologische Qualitätskomponenten
 Der ökologisch notwendige Mindestabfluss stellt in allen Gewässern jene Menge und Dynamik der Strömung und die sich daraus ergebende Verbindung zum Grundwasser sicher, dass die für den guten Zustand festgelegten Werte für die biologischen Qualitätskomponenten mit an Sicherheit grenzender Wahrscheinlichkeit erreicht werden. Dies ist gegeben, wenn eine solche Mindestwasserführung ständig im Gewässerbett vorhanden ist, die
 1. größer ist als der Wert für das natürliche niederste Tagesniederwasser \(NQ_{Restwasser} \geq NQ_{t\, natürlich}\),
 2. in Gewässern, bei denen der Wert für das natürliche niederste Tagesniederwasser kleiner ist als ein Drittel des natürlichen mittleren Jahresniederwassers, jedenfalls ein Drittel des natürlichen mittleren Jahresniederwassers \(NQ_{Restwasser} \geq 1/3 \, MJNQ_{t\, natürlich}\) beträgt,
 3. in Gewässern, bei denen \(MQ < 1\,m³/s\) und der Wert für das \(NNQ_T < 1/2 \, MJNQ_{t}\) ist, jedenfalls \(NQ_{Restwasser} \geq 1/2 \, MJNQ_{t\, natürlich}\) beträgt,
 4. und im natürlichen Fischlebensraum die in Anlage G festgelegten Werte für die Mindestwassertiefe und die Mindestfließgeschwindigkeit erreicht, und
 5. eine dynamische Wasserführung entsprechend der natürlichen Abflussdynamik gegeben ist, die gewässertypische Sauerstoff- und Temperaturverhältnisse gewährleistet – dieser Wert wird anlagenspezifisch vom Sachverständigen festgelegt – in der Praxis haben sich etwa 20% herausgestellt.
Mindestwassertiefe T_{min} [m] | Ø Mindesttiefe T_{LR} [m] | Mindestfließgeschwindigkeit v_{min} [m/s]
--- | --- | ---
Epirhithral ($>10\%$ Gefälle) | 0,10 | ≥ 0,3
Epirhithral (3-10\% Gefälle) | 0,15 | ≥ 0,3
Epirhithral (≤3\% Gefälle) | 0,20 | ≥ 0,3
Metarhithral | 0,20 | ≥ 0,3
Hyporhithral | 0,20 (0,30) | ≥ 0,3
Epipotamal | 0,3 | ≥ 0,3

Mindestfließgeschwindigkeiten

Für den Bereich der Schnelle: v_{min} (m/s) ≥ 0,3
Leitströmung im Wanderkorridor: v_{min} (m/s) ≥ 0,3

7.5 Ländervergleich – Übersichtstabelle Mindestwasserführung

Sh. Tabelle im Anhang 2 – „Vergleich der verschiedenen Richtlinien und Leitfäden in Bezug auf die Mindestwassermenge“
8 Einschätzung der Expertenrunde – Mindestwasserführung

Die verschiedenen aufgeführten Richtlinien und Leitfäden sind in ihrer Struktur und Herangehensweise zur Ermittlung der geeigneten Mindestwassermenge sehr unterschiedlich. So liegen die Mindestwasserabflüsse bzw. die Orientierungswerte für Mindestwasserabflüsse zwischen 1/6 MNQ und 1 MNQ. Es zeichnet sich eine Tendenz ab, dass diese Werte sich mehr und mehr – je neuer ein Regelwerk ist - erhöhen.

Die Anforderungsprofile der einzelnen Fischarten hingegen weichen nur gering von einander ab. An pessimalen Stellen wird bei allen Richtlinien und Leitfäden eine Geschwindigkeit größer als 0,3 m/s gefordert und auch die Wassertiefe ist im Vergleich bei der Äsche in allen Richtlinien und Leitfäden sehr ähnlich.

Die Anforderungen der Wasserrahmenrichtlinie - im Fall des Mindestwasserabflusses sind dies die Gewährleistung der natürlichen Gewässerfunktionen – müssen in jedem Fall berücksichtigt werden. Dies sind insbesondere die verschiedenen Lebensraumbedingungen, die für einen vollständigen Lebenszyklus benötigt werden. Hierzu zählen zum Beispiel nicht nur die Anforderungen an die Durchwanderbarkeit sondern auch die erhöhten Anforderungen an Laichhabitate zur Fließgeschwindigkeit und Wassertiefe. Häufig ergeben sich bei kleineren Gewässern aufgrund der in verschiedenen Richtlinien und Leitfäden geforderten Mindestwerte für die Fließgeschwindigkeit und Wassertiefe deutlich höhere Abflusswerte als sie in ungestörten Gewässern natürlich gegeben sind.

Eine Schlüsselfunktion für die Festsetzung des Mindestabflusses bildet hierbei - wie bei den Fischaufstiegsanlagen - die Wahl der jeweiligen Indikatorfischarten, welche aus der natürlichen Fischfauna ausgewählt werden. Die Anforderungen bzw. relevante Fischleitbilder wurden von ausgewählten Fischexperten festgelegt, jedoch weisen diese Fischleitbilder nun extrem hohe Anforderungen auf.

Im Hinblick auf oft schwierige und langwierige Verfahren zur Festlegung der Mindestwassermenge in Ausleitungsstrecken sollte es möglich sein, die Mindestwassermenge in mehreren Schritten zu ermitteln. Ausgehend von einem Mindestwert könnte dieser nach Überprüfung der Funktionsfähigkeit angepasst werden (Bottom Up–Prinzip).

Eine Unterschreitung definierter geometrischer Mindestparameter (z.B. Wassertiefe) sollte möglich sein, wenn die biologische Funktionsfähigkeit auch mit niedrigeren

Eine Dynamisierung der Mindestwasserführung mit saisonalen Zu- aber auch Abschlägen wird eher positiv gesehen.

Österreich:

Kritik an der Qualitätszielverordnung Ökologie – die vorgeschriebenen Mindestwassertiefen sind z.T. nicht einmal im unbeeinträchtigten Naturgewässer vorhanden!
9 Literatur Mindestwasserführung

[1] Qualitätszielverordnung Ökologie Oberflächengewässer – QZV Ökologie OG, Bundesgesetzblatt für die Republik Österreich, 99. Verordnung vom 29.03.2010

10 **Wirtschaftliche Auswirkungen**

Um ganzheitlich fundierte Bewirtschaftungsentcheidungen zu ermöglichen, ist auch eine hinreichende Transparenz über die einzel- und gesamtwirtschaftlichen Kosten und Nutzen erforderlich, welche mit der Errichtung von FAA verbunden sind:

Zu den einzelwirtschaftlichen Folgen für den Wasserkraftbetreiber zählen die direk- ten Maßnahmenkosten (Bau, Betrieb/Unterhaltung von FAA etc.), die Erlösminde- rung durch energetische Verluste (Mindestwasserabgabe, Betriebswasser FAA etc.), ggf. spezifische Mehrerlöse auf die Resterzeugung durch EEG-Mehrvergütung (öko- logische Modernisierung im Sinne der Übergangsregelung EEG 2009 oder guter Zu- stand im Sinne EEG 2012) und Drittmittel (Fördermittel, Ausgleichs- und Ersatzmaß- nahmen).

Zu den gesamtwirtschaftlichen Folgen für die Allgemeinheit zählen der Nutzen der gewässerökologischen Verbesserung sowie die gesellschaftlichen Kosten aus Nutzungseinschränkungen, hier insbesondere die Kosten aus dem Verlust der CO2-Vermeidung im Energiesektor (s. o. ökologische Zielsetzungen). Die Sekundärnutzen der Wasserkraft wie Hochwasserschutz, Abfallentsorgung, Tourismus und Gewäs- serausbau beinhalten außerdem gesamtgemeinschaftliche Vorteile und Akzeptanz. In Abhängigkeit der lokalen Rahmenbedingungen kann auch die öffentliche Hand für gewässerökologische Verbesserungsmaßnahmen verantwortlich sein (z.B. WSV für FAA an BWaStr), so dass sich die direkten Maßnahmenkosten und Drittmittel (s. o.) schlussendlich auch auf die Allgemeinheit der Steuerzahler niederschlagen können.

Moderate Bemessungsparameter sind insofern zu fordern, weil diese einerseits we- sentlichen Einfluss auf die Abmessungen und somit auch auf die Bau-, Betriebs- und Instandhaltungskosten (unabhängig von der Trägerschaft) und andererseits auf die erforderliche Dotation und den Betriebsabfluss der FAA haben.

Der sich in relativ geringen Zeiträumen ändernde sogenannte Stand der Technik führt außerdem dazu, dass Anlagen, die erst vor wenigen Jahren umgesetzt wurden, als überholt erklärt werden und deren Modernisierung angestrebt wird. Dies bedeutet beachtliche Investitionskosten und -unsicherheiten.

Neben den rechtlichen, ökologischen und ökonomischen Randbedingungen existie- ren weitere technisch-betriebliche Restriktionen. Im Einzelfall müssen die Flächen- verfügbarkeit sowie die hydrologischen und topografischen Gegebenheiten überprüft
werden. Bauen im Bestand birgt gerade bei älteren Anlagen weitere Risiken. Weiterhin sind die Auswirkungen auf die Versorgungssicherheit sowie betriebliche Restriktionen zu nennen (Rechenreinigung, Geschiebe, Treibgut etc.)

Darüber hinaus ist zu berücksichtigen, dass die Kosten von FAA in Abhängigkeit von den örtlichen Gegebenheiten stark schwanken können und damit im Einzelfall unverhältnismäßig hohe Kosten entstehen können.

Es existieren unterschiedliche Maßnahmen zur Verminderung der negativen wirtschaftlichen Auswirkungen. Diese sollten, sofern sie umsetzbar sind, zusätzlich zu den oben genannten Punkten bei der Entscheidungsfindung entsprechende Berücksichtigung finden:
- Dotierturbinen
- Strukturierung der Restwasserstrecken
- Dynamisierung der Abflüsse
- Leitstromoptimierung (Lockstompumpe, ausgerichtete Düsen, Abschirmung)
- Innovative FAH-Konstruktionen (z.B. enature® Fishpass).

Bild 3: Spezifische Kosten von FAA lt. DWA-M 509
VGB PowerTech e. V. ist der europäische Fachverband für die Strom- und Wärmeerzeugung mit Sitz in Essen. Über 500 Mitgliedsunternehmen aus 36 Ländern repräsentieren eine installierte Kraftwerksleistung von 530.000 MW; in Europa 471.000 MW. Sowohl Kraftwerksbetreiber als auch Hersteller, Dienstleister und Forschungsinstitutionen sind Mitglied beim VGB.

Die gesamte installierte Leistung der Wasserkraftwerke aus unseren Mitgliedsunternehmen beträgt über 40.000 MW.

Das satzungsgemäße Ziel des VGB ist der Erhalt und die Förderung der Betriebs- und Versorgungssicherheit, der Wirtschaftlichkeit und der Umweltverträglichkeit in allen Bereichen der Stromerzeugung. Der VGB bietet eine Plattform für den internationalen Austausch von Fachwissen und Erfahrungen.

Dieser Bericht wurde erstellt durch eine Expertengruppe des VGB-Fachausschusses „Wasserkraftanlagen“.

VGB PowerTech e.V.
Klinkestrasse 27-31
45136 Essen
Vorsitzender des Vorstandes: Dr. Michael Fübi
Geschäftsführer: Erland Christensen

Ansprechpartner:
Wolfgang Czolkoss
E-mail: wolfgang.czolkoss@vgb.org
T +49-201-8128-253
F +49-201-8128-321
M +49-151-18248016
Web: www.vgb.org